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Abstract

This thesis makes three theoretical contributions to the robust system analysis and control theory. First, we revisit a

central theorem in robust control theory known as the the Kalman-Yakubovich-Popov (KYP) lemma, and uncover its

“hidden” symmetric structure that is rarely articulated in the literature of robustness analysis. Roughly speaking, we

propose a new formulation of the KYP lemma so that two seemingly different quantities, “frequency” and “system

uncertainties” play symmetric roles in the robust stability analysis. It turns out that the new formulation has sufficient

generality to unify some of the recent extensions of the KYP lemma. Further consideration of this symmetry naturally

leads us to the notion of mutual losslessness, which is the exact condition for the lossless of the analysis. As a

result, the new formulation provides a general framework that answers when the KYP-like robustness analysis is

lossless. Second, we restrict our focus to the class of cone-preserving linear dynamical systems. Square MIMO

transfer functions in this class have what we call the DC-dominance property: the spectral radius of the transfer

function attains its maximum at zero frequency and hence, the stability of the interconnected transfer functions is

guaranteed solely by the static gain analysis. Using this property, we prove the delay-independent stability of cone-

preserving delay differential equations. This provides an alternative proof of the delay-independent mean-square

stability of multi-dimensional geometric Brownian motions. Finally, we further restrict our focus to the special class

of cone-preserving systems known as positive systems. We prove a novel “diagonal” KYP lemma for positive systems,

which ensures the existence of a diagonal storage function without introducing conservatism whenever the system is

contractive. This result suggests that a certain class of distributed optimal control for positive systems can be found

via the semidefinite programming (SDP).
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Summary

The Kalman-Yakubovich-Popov (KYP) lemma is a central tool in the robust control theory. The KYP lemma converts

various robust stability and performance conditions to Linear Matrix Inequality (LMI) conditions, so that they can

be efficiently verified by semidefinite programming (SDP) solvers. Depending on the types of the analysis, the KYP

lemma may provide a necessary and sufficient LMI condition to the desired system property (the KYP lemma is said

to be lossless), but often the LMI condition is only sufficient (the KYP lemma is lossy). In this thesis, we formulate

the KYP lemma in a general form so that it unifies some of the recent results on the KYP-based system analysis, with

a particular emphasis on its underlying symmetric structure. Roughly speaking, this symmetry implies an intimate

relationship between frequency variables and system uncertainties, storage functions and supply rate in the language

of dissipativity theory, and also between parameter dependent Lyapunov functions and integral quadratic constraints

(IQC). The main motivation for this work is to provide a unified theory to answer the question as to when the KYP

lemma provides an exact LMI test for robust stability and performance analysis. The notion of mutual losslessness

is introduced to characterize lossless S-procedures and the KYP lemma. It turns out that the new framework has

sufficient flexibility to explain the losslessness of various robust stability analyses, including the Generalized KYP

lemma for finite frequency analysis, the KYP lemma for nD systems, µ-analysis, and the “diagonal” KYP lemma

for positive systems. Although there is so far no general method for proving the mutual losslessness property, the

proposed framework provides new intuitions on the existing and future robust control theories.

The complexity of the robust stability and performance analysis can be drastically reduced by encompassing special

properties of the problem of interest. As the second main topic of this thesis, we focus on the class of linear dynamical

systems that leaves a proper cone in the space of L2 signals invariant, and uncover what we call the DC-dominant

property of this class of systems. In short, this means that if G(jω) is a cone-preserving square MIMO transfer

function, then the spectral radius ρ(G(jω)) attains its maximum at ω = 0. This property eliminates a need for the

“frequency sweep” often required for the system analysis in generic theories and allows one to focus only on static

gains of the system. Besides its direct implications, the DC-dominance property also contributes to simplify the

analysis of the systems with delay. In particular, we prove that the delay-independent stability of cone-preserving
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systems using this property. Using this result, we present an alternative approach to prove the delay-independent

mean-square stability of multi-dimensional geometric Brownian motions.

We then focus on the special class of cone-preserving systems known as positive systems. Positive systems naturally

appear to model real-world dynamical systems whose state variables are non-negative, such as temperature, probabil-

ity, concentration of substances in chemical processes. We prove a novel “diagonal” KYP lemma for internally positive

systems, which ensures the existence of a diagonal storage function without introducing conservatism whenever the

system is contractive. This result suggests that a structured (or distributed) static state feedback H∞ optimal control

design problem can be formulated as a convex problem and can be efficiently solved by a semidefinite programming

(SDP) solver, provided the closed loop dynamics is again guaranteed to be internally positive. This makes the class of

positive system interesting in the research of distributed control as well, since a convex formulation of the same con-

trol problem is not known for the general linear systems. Together with the LP-based control design already reported

in the literature which is aiming at the L∞-induced gain minimization, now the convex formulation of the optimal

distributed control in the H∞ sense is available for positive systems.

v
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Chapter 1

Introduction

1.1 Overview

It is virtually impossible to obtain a perfect mathematical model for a physical, social, engineering and cyber system in

the real world. Nevertheless, we are often required to confirm the safety of a system based on its imperfect information,

either in a deterministic or probabilistic fashion, in order to operate them properly. For the system and control theory

to be a versatile player in these ubiquitous needs, it is important to have a rich collection of mathematical methods to

describe various forms of uncertainties. Once the uncertainties are appropriately expressed as a mathematical model, it

is also important to have an efficient algorithm to analyze the constructed model and verify its robustness. Throughout

this thesis, such a two-step approach to analyze the real world systems is referred to as the robustness analysis.

These two requirements in the robustness analysis are often trade-off: if one wish to use a very precise and detailed

description of the uncertainty, there is typically no efficient algorithm to analyze it, while easily analyzable uncertainty

models likely to result in a conservative result. Moreover, definitions of the “richness” of the collection of uncertainty

descriptions and the “efficiency” of the algorithms evolves over the decades. For example, a previously believed

“rich enough” collection of robustness analysis tools can turn out to be mostly fragile in emerging applications [1].

Similarly, many of the LMI-based robustness analysis were not considered efficient until sophisticated SDP solvers

became available.

In this introductory chapter, we review a method to describe uncertainties using the well-posedness model, also known

as the LFT (linear fractional transformation) model or theM−∆ model, which is reasonably flexible to accommodate

many types of robustness analysis and is reasonably simple to analyze. (In this sense, the well-posedness model locates

on the Pareto frontier of the bidirectional requirements in the robustness analysis as in Figure 1.1.) Among other pos-

sible definitions appearing in system and control literature, our definition of the well-posedness is particularly simple.

1
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Figure 1.1: Overview of this thesis

We restrict our attention to the feedback loop of interconnected matrices (not operators), and concerns invertibility of

the resolvent matrix over a certain domain. An implicit but an important assertion of this thesis is that this framework

suffices for the robust stability analysis of linear time invariant (LTI) systems. This observation is related to the sym-

metric formulation of the KYP lemma in Chapter 3, in which a frequency variable (such as the Laplace variable “s”)

is treated as an unknown complex number, as in the same way as other uncertain parameters in the dynamical system

are treated. In the following sections, we will discuss how this a robust stability analysis problem can be formulated

as a well-posedness problem.

When a robustness analysis is performed, it is important to exploit a special “structure” of the system of interest, since

much more efficient algorithms than a general purpose algorithm might be available by making use of the structure. In

Chapter 3 and 4, we proceed the path along the Pareto frontier as in Figure 1.1, and consider a special class of systems

with a particular structure and more efficient algorithms for exploiting the structure. In Chapter 3, we will focus on

a special class of linear systems that has the “cone-preserving” property. Dynamical systems in this class appear in

statistics, signal processing and filtering algorithms, as well as in quantum systems. Also, the entire class of positive

systems belongs to this class. We will make use of the special structure of the systems in this class and prove that it

is sufficient to perform a static gain (DC-gain) analysis, i.e., the behavior of the system at zero frequency to conclude

stability. This gives a drastically simpler criterion for the well-posedness as compared to the scenario without taking

cone-preserving property into account. Then we further restrict out attention to positive systems in Chapter 4.

2
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 𝑀 

 𝛺 

𝑤 

𝑧 

𝑢 

𝑣 

+ 

+ 

Figure 1.2: Interconnected matrices

1.2 Well-posedness of an algebraic loop

Since the notion of well-posedness used in this thesis is very simple, we start by introducing its mathematical definition.

Suppose two matrices M,Ω ∈ Cn×n are given, and vectors u, v, x, y ∈ Cn satisfy the following set of equations:

z = Mw + v, w = Ωz + u. (1.1)

This relationship is graphically written as in Figure 1.2. We assume that M is a fixed matrix, while Ω takes values in

a set Ω ⊂ Cn×n.

Definition 1 (Well-posedness) Let a matrixM ∈ Cn×n and a non-empty set Ω ⊆ Cn×n be given. The interconnection

of M and Ω, denoted by [M,Ω], is said to be well-posed if

 I −M

−Ω I


−1

exists for all Ω ∈ Ω, and there is γ > 0 such that

∥∥∥∥∥∥∥
 I −M

−Ω I


−1∥∥∥∥∥∥∥ ≤ γ ∀Ω ∈ Ω.

In other words, the well-posedness of [M,Ω] means that the induced gain of a linear map fΩ : (u, v) 7→ (z, w) is

uniformly bounded over Ω. Well-posedness in this definition is arguably simpler than the widely accepted definition

involving operators on Hilbert spaces (e.g. [22]). Although we will keep using the terminology well-posedness, the

condition in Definition 1 might be better referred to as the robust matrix invertibility. It is somewhat surprising to

observe that many engineering problems can be reduced to the robust matrix invertibility problems.
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1.3 Modeling dynamics via well-posed feedback loop

Suppose the behavior of a dynamical system is modeled as a differential equation ẋ(t) = Ax(t) and there is no

uncertainty. Then the system is asymptotically stable if and only if the matrixA is Hurwitz, i.e., there is no eigenvalues

in the closed right half plane. The fact that this system is asymptotically stable can be equivalently written as a well-

posedness condition.

1.3.1 Example : Continuous time linear dynamical system

A linear differential equation ẋ(t) = Ax(t) is asymptotically stable if and only if the interconnection [A,Λ] is well-

posed where

Λ = {λI : λ ∈ C̄+}.

To see the sufficiency, suppose that the transfer function is not stable, i.e., A has an eigenvalue in C̄+. If A has an

eigenvalue at the origin, the interconnection cannot be well-posed for the following reason. Consider a sequence {λk}

in C̄+ \ {0} such that limk→∞ λk =∞. Then

lim
k→∞

‖(I − λkA)−1λk‖ = lim
k→∞

‖( 1

λk
I −A)−1‖ =∞.

By the matrix inversion lemma,

lim
k→∞

∥∥∥∥∥∥∥
 I −A

−λkI I


−1∥∥∥∥∥∥∥ = lim

k→∞

∥∥∥∥∥∥∥
 I +A(I − λkA)−1λk A(I − λkA)−1

(I − λkA)−1λk (I − λkA)−1


∥∥∥∥∥∥∥ =∞ (1.2)

The above limit is unbounded because the lower left corner is unbounded. This contradicts the well-posedness. On

the other hand, if A has an eigenvalue ν in C̄+ \ {0}, by choosing λ = ν−1 ∈ C̄+, λA has an eigenvalue at 1. This

means that

 I −A

−λI I

 is not invertible, and again contradicts the well-posedness. Hence, the well-posedness of

[A,Λ] is sufficient for stability.

To see the necessity, suppose [A,Λ] is not well-posed. Then there exists a sequence {λk} in C̄+ \ {0} such that (1.2)

holds and

lim
k→∞

λk = λ∞ ∈ C̄+ ∪ {∞} \ {0}.

Here, we have already removed the possibility that λ∞ = 0, since in this case (1.2) cannot hold. So the sequence

4
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⇔ 𝐺(Λ) 𝐴 𝐵
𝐶 𝐷

 

Λ 

(a) (b) 

Figure 1.3: LFT representation of a transfer function

νk := 1/λk has a bounded limit limk→∞ νk = ν∞ = 1/λ∞ ∈ C̄, and

(1.2) = lim
k→∞

∥∥∥∥∥∥∥
 I +A(νkI −A)−1 A(νkI −A)−1νk

(νkI −A)−1 (νkI −A)−1νk


∥∥∥∥∥∥∥ =∞.

For this to be true, it is necessary that

lim
k→∞

‖(νkI −A)−1‖ =∞.

This implies that A has an eigenvalue at ν∞ ∈ C̄+. Hence ẋ(t) = Ax(t) cannot be asymptotic stable.

1.3.2 Example : Discrete time linear dynamical system

A linear difference equation x(k + 1) = Ax(k) is asymptotically stable if and only if the interconnection [A,Λ] is

well-posed where

Λ = {λI : λ ∈ D̄}.

This can be verified similarly as in the previous example.

These observations indicate that a stable transfer function Ĝ(s) = C(sI − A)−1B + D can be written using a

well-posed algebraic loop as in Figure 1.3. In this figure, the matrix Λ can take values in a user specified domain

Λ (two examples are considered above), and is understood be the classical integrator blocks s−1I or z−1I . We

may refer to a matrix values quantity Λ itself as the frequency variable, and write the same transfer function as

G(Λ) = C(I − ΛA)−1ΛB + D. As we will see later, the symmetric role between frequency variables and system

uncertainties can be better seen through Λ than through s or z.
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1.4 Modeling uncertainties via well-posed feedback loop

When there is no uncertainty in the model ẋ(t) = Ax(t), the stability can be checked by constructing the characteristic

polynomial of A and apply the Routh-Hurwitz criterion. Alternatively, one can search for a positive definite matrix

P satisfying the Lyapunov inequality ATP + PA < 0 by semidefinite programming. Both algorithms are known to

be efficient, in the sense that the time complexity grows at most as a polynomial function of the size of the problem

instance [2].

If the linear equation model ẋ(t) = Ax(t) contains uncertainties, there are many possible approaches to guarantee

robust stability. One natural approach inspired by the Routh-Hurwitz criterion is to capture the uncertainty by interval

polynomials. This approach assumes that coefficients of the characteristic polynomials take values in some prespeci-

fied interval and asks if all polynomials in this set are Hurwitz. A celebrated result in this approach is the Kharitonov’s

theorem [3], which states that the robust stability is guaranteed if and only if four important corner polynomials are

Hurwitz. This surprising result is valuable in the computational aspect as well, since it implies that the time com-

plexity of the algorithm grows at most polynomially as the order of the system grows. One criticism to this approach

is that the interval polynomial model is often unrealistic in practice, since in many cases, the uncertain coefficients

are correlated to each other and not “fully perturbed” in the uncertainty set. This issue is partially solved by using a

polytope of polynomials rather than interval polynomials and applying the so-called the Edge theorem. Alternatively,

one can regard the entries of the matrix A are uncertain. Unfortunately, there is no similar result to the Kharitonov’s

theorem for a matrix interval. In fact, it is known that robust stability of matrix interval is NP-hard to decide.

It is also standard to consider the small gain uncertainties of the form of ẋ = (A+B∆C)x, in which that the unknown

(complex) matrix ∆ is assumed to satisfy ‖∆‖ ≤ ρ. The largest ρ to which the asymptotic stability is guaranteed is

called the (complex) stability radius. The same quantity when ∆ is restricted to be a real matrix is called the real

stability radius. The real stability radius is known to be much harder to compute than the complex stability radius,

but an explicit formula is derived in [4]. In these models, ∆ is assumed to be completely deterministic, but the other

extreme (in the sense that ∆ is a stochastic perturbation) is also popular model of uncertainties. The largest ρ to which

the stochastic differential equation dx = Axdt+ ρBxdw is mean-square stable is also called the stability radius, and

is extensively studied (e.g., [5, 6, 7]).

Much more general form of deterministic uncertainties can be modeled by using the linear fractional transformation

(LFT) by ẋ = A(∆)x, A(∆) = A + L(I −∆D)−1∆R, where ∆ belongs to a certain prescribed set ∆. This form

is known to be general enough to model uncertain parameters entering A(∆) in a polynomial or rational manner,

provided that A(∆) is not singular over ∆. This is known as the LFT representation lemma [8, 9]. To show the

6
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⇔ 𝐴(Δ) 

𝐴 𝐵
𝐶 𝐷

 

Δ 

(a) (b) 

Figure 1.4: LFT representation of an uncertainty

flexibility of the LFT representation using an example, consider the following uncertain Vandermonde matrix:

A(δ) =


1 x1 + δ1 · · · (x1 + δ1)n−1

...
...

...

1 xm + δm · · · (xm + δm)n−1


where δi’s are unknown but bounded parameters. This can be written in the form of A(δ) = A+ B(I −∆D)−1∆C

where matrices A,B,C,D are “certain” quantities while uncertain quantities δi appear on the diagonals of a diagonal

matrix ∆, provided that (I − ∆D)−1 exists [10]. This formulation is used for robustness analysis of polynomial

interpolation. Notice that the uncertainties expressed in the LFT model can be graphically written as in Figure 1.4.

1.5 Robust stability analysis using well-posedness model

We have seen that the stability of a transfer function is equivalent to the well-posedness of an algebraic loop in Figure

1.3. We also saw that uncertainties that enters into a matrix A in a polynomial or a rational way can be written as

an algebraic loop for a specific ∆ in Figure 1.4. By combining these observations, the robust stability of the system

ẋ = A(∆)x can be equivalently written as the well-posedness condition of the interconnection [M,Ω], where

M =

 A L

R D

 , Ω =

 Λ 0

0 ∆

 .
In the above expression, the set Λ is typically a user specified frequency region, while the set ∆ is a user specified

uncertainty region. In a block diagram form, the robust stability can be expressed as the well-posedness of an algebraic

loop in Figure 1.5, which can be obtained by combining Figure 1.3 and Figure 1.4. This operation can be thought of as

a generalization of the main loop theorem [11]. In this formulation, the algebraic roles of the two matrices Λ and ∆ are

7
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𝐴 𝐵
𝐶 𝐷

 

Λ 0
0 Δ

 

Figure 1.5: Generalized main loop theorem

symmetric, even though the physical meanings of these two objects are originally different. This observation suggests

that all known techniques to characterize system uncertainties can also be used to characterize frequency regions, and

vice versa.

1.6 Discussion

Our treatment is slightly unconventional in that we are treating the “frequency variable” s and the uncertainty ∆

equally. One might ask what if the uncertainty is not a simple matrix but a unknown transfer function ∆(s) =

C∆(sI − A∆)−1B∆ + D∆. This is very likely to happen in practice if one tries to capture unmodeled dynamics

as uncertainties. One justification for us to focus on the matrix-valued ∆ only is that we can always rewrite the

feedback diagram in such a way that a nominal matrix M is interconnected to uncertain matrices A∆, B∆, C∆, D∆,

as well as to another uncertain matrix Λ = s−1I (in fact, this is an integrator). Another justification is that the small

gain theorem guarantees that if the interconnection of the nominal system M(s) and a stable transfer function ∆(s)

satisfying ‖∆(s)‖∞ < 1 is internally stable if and only if the interconnection of M(s) and a complex matrix ∆

satisfying ‖∆‖ < 1 is internally stable (e.g.,[12] p.219).

Our approach to the robustness analysis is based on the well-posedness condition defined in Definition 1, which

simply concerns the invertibility of a resolvent matrix. More generally, the invertibility of resolvent operators in a

Hilbert space can be employed as the definition of the well-posedness as in [13]. We take the former approach to

pursue simplicity of the unified theory, but there is a cost of simplicity. One big restriction in our framework is that the

treatment of time has to be through the frequency domain. This clearly means that our framework requires a dynamical

system of interest to be expressed as a “transfer function” form through the Laplace transform, the z-transform, and

etc. For example, one of the important results in the robust stability analysis is the necessity of the scaled small gain

test against norm-bounded structured linear time-variant uncertainties (this is based on the lossless S-procedure on L2

space by [14], a detailed explanation can be found in [13], Chapter 8). However, this result is difficult to recover in

8
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our framework, since the class of time-variant uncertainties is difficult to express in the frequency domain.

1.7 How to ensure well-posedness?

So far, we have seen that the well-posedness model provides a fairly general framework for robustness analysis. This

observation itself, however, is of little of use in practice without an efficient algorithm to check if a given intercon-

nection [M,Ω] is well-posed or not. Since the set Ω is typically uncountable, it is virtually impossible to verify the

definition of well-posedness directly. Hence the existence of an algorithm to give a “certificate” for the well-posedness

is crucial.

Unfortunately, verifying well-posendness can be computationally challenging even for a relatively simple and practi-

cally important structure of Ω. For example, suppose that the set Ω is given by

Ω = {diag(δ1I, · · · , δnI) : −1 ≤ δi ≤ 1}.

Then verifying the well-posedness of [M,Ω] is essentially the (real) structured singular value problem (µ-analysis). In

[15], it is shown that computing µ is NP-hard by showing that the indefinite quadratic programming, which is already

known to be NP-complete, can be cast as a problem of µ computation. There are several possible approaches to deal

with the NP-hardness of the µ problem. For example, since Ω is compact, the well-posedness is equivalently verified

by showing det(I −MΩ) 6= 0 for all Ω ∈ Ω. This means that the following closed semialgebraic set is empty.

C =

(δ1, · · · , δn) ∈ R× · · · × R :

f(δ1, · · · , δn) := det(I −MΩ) = 0

Ω = diag(δ1I, · · · , δnI)

gi(z) = 1− δ2
i ≥ 0 ∀i = 1, · · · , n


From the viewpoint of real algebraic geometry, the Stingel’s positivstellensatz [16, 17] implies that C is empty if and

only if

− 1 ∈ ideal(f) + cone(g1, · · · , gn). (1.3)

This means that there exists k ∈ N such that one can construct a particular set of sum of square (SOS) polynomials of

order at most k which guarantees the emptiness of C if it is empty. Since polynomial SOS problem can be written as

a semidefinite programming problem, at least in principle, the µ problem is arbitrarily approached by a hierarchy of

SDPs as far as one is allowed to keep increasing the dimension of the SDPs. Related techniques via the problem of

moments are also known (e.g., [18, 19]). A drawback of this generic approach is that the dimension of the SDP grows

quickly by increasing the order of polynomials, and the largest order of the polynomial required to check the above

9
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condition is not known a priori.

Another approach is to use polynomial time randomized algorithms [8] to assert that the set C is empty “with high

probability”. One advantage of this approach is its flexibility to encompass the probability distribution of the uncer-

tainties and accept a small probability of violation, which practically makes sense in many real applications. Note

that such randomized approach is effective not only for the well-posedness based robustness analysis, but also for

many other engineering problems. However, the time complexity of the randomized algorithms required to generate

sufficient number of samples grows dramatically as the size and the VC-dimension of the problem grows.

In order to circumvent time complexity issues of these generic approaches, it is often valuable to exploit a particular

structure of the problem. As noticed in the literature of the µ-analysis, the uncertain matrix Ω typically has a block

diagonal structure as in Figure 1.6. The Kalman-Yakubovich-Popov (KYP) Lemma in our formulation in the following

chapters can be viewed as a systematic method to relax the well-posedness problem of the form of Figure 1.6 to a conic

programming problem (typically LMIs) to which an efficient numerical solvers are often available. As one can infer

from the NP-hardness of the µ-problem, the relaxation by the KYP lemma is not always tight. When the relaxation

is not tight, an LMI condition deduced from the KYP lemma is only a sufficient condition for the well-posedness. In

such cases, the KYP lemma is said to be lossy. On the other hand, if the LMI condition deduced from the KYP lemma

is indeed tight, then the lemma is said to be lossless. In the next chapter, we consider the losslessness property of the

KYP lemma in depth.
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Figure 1.6: Well-posedness with block diagonal Ω.
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Chapter 2

Symmetry in the KYP Lemma and Its Losslessness

In this chapter, we consider algorithms to verify stability and performance of dynamical systems. Since we saw that

the well-posedness problem is the “standard problem” which many robust analysis problems can be converted to, we

are interested in algorithms that can efficiently prove well-posedness. We will focus on the well-posedness problem

with a certain structure as shown in Figure 1.6 in which each of the matrix valued parameters Si belongs to some

prespecified sets Ri. Clearly, the difficulty of the analysis depends on the “shapes” of the sets Ri. We want to have a

rich and flexible framework to approximate various shapes of uncertainty sets so that the framework can accommodate

various types of uncertainties appearing in practices. At the same time, we want to keep the shape of Ri simple so

that efficient analysis algorithms exist to analyze them. A good compromise is to focus on the class of Ri that can

be characterized by a set of quadratic forms (the definition will be given shortly). This leads to system analysis via

the Kalman-Yakubovich-Popov (KYP) lemma, which can be seen as a unification of the historical techniques such

as the small gain theorem, passivity theorem, Popov criterion, and the circle criterion. We regard the KYP lemma as

a systematic method to convert well-posedness condition into a conic programming condition such as LMIs which

is often verifiable by a polynomial time algorithm. For some problems, the conic programming yields a solution (a

certificate) if and only if the system is well-posed (the KYP lemma is lossless). Unfortunately, for many important

problems, such a certificate is only sufficient (the KYP lemma is lossy). Although various types of KYP-like lemmas

are studied in the literature, their losslessness results appear rather sporadically and no transparent discussion has been

made as to when the lossless KYP lemma is available. Hence in this chapter, we attempt to give a common theoretical

framework that gives a big picture as to when the losslessness is available, by first noticing a symmetry between

the multipliers used to characterize the uncertainties of interest, and the Lyapunov-like functions used to establish

stability. The form of the KYP lemma we propose in this chapter has sufficient flexibility to express various types of

the KYP-like lemmas and explain their losslessness.

12
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2.1 The first example

The symmetry we will emphasize in this chapter can be clearly seen in the following example of discrete time linear

model

G :
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
.

For the sake of simplicity, we assume A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m here. Suppose that this

systems is dissipative (in the sense of [20]) with respect to the supply rate s(u, y) with storage function V (x) given by

s(u, y) = yTQy − uTQu ; V (x) = xTPx

where P and Q are positive definite matrices. The necessary and sufficient condition for this to be true is the matrix

inequality condition

 A B

I 0


∗

Θ

 A B

I 0

+

 C D

0 I


∗

Π

 C D

0 I

 < 0 (2.1)

Θ =

 P 0

0 −P

 , Π =

 Q 0

0 −Q

 .
Now, notice an apparent symmetry holding between Θ and Π in the above condition. Namely, if we define a new

system

G̃ :
x(k + 1) = Dx(k) + Cu(k)

y(k) = Bx(k) +Au(k),

then the above condition is equivalent to saying that G̃ is dissipative with respect to the supply rate s̃(u, y) with a

storage function Ṽ (x) given by

s̃(u, y) = yTPy − uTPu ; Ṽ (x) = xTQx.

Notice that in the new interpretation, the roles of P and Q in the supply rate and the storage function are flipped.

Among the voluminous literature related to the KYP lemma, this symmetry seems to be implied by a few but not

many papers. The most explicit reference is given by [11], which points out the “duality” between the H∞ norm

conditions and the parameter dependent Lyapunov conditions in the context of well-posedness analysis of uncertain

LTI systems. Another indicator of this symmetry in the literature is the fact that the notion of S-procedure is used for

both purposes of frequency domain specification and uncertainty specification. For example, the Generalized KYP

lemma [21] utilizes a sophisticated lossless S-procedure to derive a tractable algorithm for a nontrivial frequency
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domain test, while the role of the S-procedure in the IQC framework is well known [22]. However, to the best of our

knowledge, there is no literature discussing the KYP lemma with an explicit emphasis on this symmetry. With an

emphasis on symmetry, we introduce a new notion of mutual losslessness to describe when the KYP lemma yields a

lossless LMI condition [23]. It turns out that noticing this symmetry in the KYP lemma, together with the notion of

mutual losslessness, gives a good intuition on the losslessness of various recently proposed robust stability analysis

tools, including the Generalized KYP lemma [21], KYP lemma for nD-systems [24][25], and µ-analysis.

2.2 Contribution of this chapter

It is not our intension to make this chapter a restatement or a review of the KYP lemma. Our contribution in this

chapter lies in its formulation, so that the underlying mathematical structure is articulated. In particular, we emphasize

the fact that both frequency variables (such as Laplace variable “s”) and system uncertainties ∆ can be modeled as one

of uncertain parameters Si in Figure 1.6. Once the problem is formulated in this form, it becomes less important to

know the original physical meaning of each uncertain parameter. Hence, in the LTI system analysis it is more natural

to treat them symmetrically, although overwhelming literatures treat “frequency” and the “uncertainty” as different

objects.

One benefit of highlighting the symmetry is that it clarifies the point that the losslessness of the KYP lemma should be

naturally discussed as a matter of the relationship among sets of Hermitian matrices involved in the lemma. In this way,

we propose a new notion, which we call the mutual losslessness to characterize the exact condition for losslessness.

The notion of mutual losslessness can be seen as a generalization of the losslessness in the classical literatures on the

S-procedure to the situations in which there are infinite number of constraints. This will be discussed in Section 2.9.

Although the new algebraic condition of mutual losslessness remains difficult to check, we believe that this observation

opens new perspectives for understanding and proving losslessness of the S-procedure and the KYP lemma under

various situations. In Section 2.7, we relate seemingly different questions in system analysis by switching the role of

frequency variables and the system uncertainties. This suggests that the knowledge obtained for one problem can be

directly applied to the other problem.

In short, the contributions of this chapter are: (1) A framework to characterize matrix valued regions both for frequency

variables and uncertainties, which enables a unified description of various types of the KYP lemma, (2) Introduction

of the symmetric formulation of the S-procedure and the KYP lemma, which has its own beauty and novelty, (3) The

notion of mutual losslessness, which is a generalized way to characterize the lossless properties of the S-procedures.
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2.3 Quadratic characterization

We first define a flexible framework to describe various types of regions Ri ⊂ Cn for uncertain parameters Si. An

important observation is that the same framework is used to characterize both domains of frequency variables and

system uncertainties. This allows us to describe the KYP lemma in a symmetric form in later sections. Let Θ ⊂ H2n

be a convex cone. Suppose the domain Ri to which parameter Si in Figure 1.6 belongs is characterized by Θ, and is

given by

R(Θ) :=

S ∈ Cn×n :

 I

S


∗

Θ

 I

S

 ≥ 0 ∀Θ ∈ Θ

 . (2.2)

The definition (2.2) can be used to specify a varieties of regions in Cn×n by appropriately choosing the convex cone

Θ ⊂ H2n. For example:

Example 1 If Θ =

Θ ∈ H2n : Θ =

 0 P

P 0

 , P > 0

 , thenR(Θ) =
{
S = sI : s ∈ C̄+

}
.

Proof: It is easy to show that R(Θ) ⊃
{
S = sI : s ∈ C̄+

}
. To see the converse, suppose S ∈ R(Θ). Pick

P = Ei + εI > 0 where Ei has all zero entries except its (i, i)-th entry, which is one. We obtain

 I

S


∗  0 P

P 0


 I

S

 =


0 ∗ 0

∗ 2Re(Sii) ∗

0 ∗ 0

+ ε(S + S∗).

In order for S ∈ R(Θ), the above matrix needs to be positive definite for arbitrarily small ε > 0. To this to be true,

it is necessary that Re(Sii) ≥ 0. Also, entries indicated by ∗ must be all zero. This shows that an element of R(Θ)

has to have a form S = diag(s1, · · · , sn) with Re(si) ≥ 0 for all i = 1, · · · , n. To show that s1 = · · · = sn, suppose

that s1 6= s2 without loss of generality. By taking

P =


1 1

1 1
0

0 0

+ εI > 0,

we have  I

S

∗  0 P

P 0

 I

S

 =


2(1 + ε)Re(s1) s2 + s̄1

s1 + s̄2 2(1 + ε)Re(s2)
0

0 ∗

 . (2.3)
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Θ Frequency regionR(Θ) Applications

(a)
[

0 P
P 0

]
: P > 0 Λ = λI : λ ∈ C̄+

Frequency domain for continuous
time stable systems

(b)
[

0 P
P 0

]
: P > 0 is diagonal

Λ = diag(λ1, · · · , λn) :
λi ∈ C̄+ ∀i = 1, · · · , n

Frequency domain for
stable n-D systems

(c)
[
Q 0
0 −Q

]
: Q > 0 Λ = λI, λ ∈ D̄ Frequency domain for discrete

time stable systems

(d)
[
Q 0
0 −Q

]
:
Q = diag(Qh, Qv)
Qh ∈ Hnh

, Qv ∈ Hnv

Λ = diag(ejωhInh
, ejωhInv )

Frequency domain for
discrete 2D Roesser Model

(e)
[
Q P
P −ω2

0Q

]
: Q > 0, P ∈ Hn Λ = (j/ω)I : |ω| ≥ ω0

High frequency range for
continuous time systems

Table 2.1: Examples of frequency regionsR(Θ).

Π Uncertainty regionR(Π) Applications

(f)
[
τI 0
0 −τI

]
: τ > 0 ∆ ∈ Cn×n : ‖∆‖ ≤ 1 Small gain uncertainties

(g)
[

Πd 0
0 −Πd

]
:

Πd = diag(τ1I, · · · , τrI)
τi > 0 ∀i = 1, · · · , r

∆ = diag(∆1, · · · ,∆r) :
‖∆i‖ ≤ 1 ∀i = 1, · · · , r Structured uncertainties

(h)
[

0 τI
τI 0

]
: τ > 0 ∆ ∈ Cn×n,∆ + ∆∗ ≥ 0 Positive real uncertainties

Table 2.2: Examples of uncertainty regionsR(Π).

Consider the determinant of the upper left 2× 2 matrix. Notice that

det

 2(1 + ε)Re(s1) s2 + s̄1

s1 + s̄2 2(1 + ε)Re(s2)

 = 4(2ε+ ε2)Re(s1)Re(s2)− |s1 − s2|2 < 0

for sufficiently small ε > 0. This implies that there exists P > 0 such that (2.3) is not positive semidefinite. This

means that S has to be of the form of S = sI : s ∈ C̄+.

Few more examples are summarized in Table 2.1 and 2.2. Notice that Table 2.1 shows regions for the frequency

variables that are used for the analyses of various type of systems, while Table 2.2 shows regions that are typically

used to represent various types of system uncertainties. In the former cases, variables P and Q are conventionally

interpreted as the Lyapunov functions, while in the latter cases Π can be viewed as a parameterizing set of IQCs.

Defining the frequency variables in Cn×n enables us to express these different objects in a single framework.
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2.4 Operator-oriented approach vs. Signal-oriented approach

Our approach to robust stability and performance analysis is to rewrite the original problem into a question about well-

posedness, in which we study an interaction of a matrix M and a set of uncertain matrices Ω. Alternative approach is

purely based on input-output behavior of uncertain operators in Ω, without explicitly defining Ω. For a pair of input

and output vectors (w, x) ∈ C2n, let (w, x) ∈ IQC(Θ) mean that

 w

x


∗

Θ

 w

x

 ≥ 0 ∀Θ ∈ Θ.

For example, suppose we want to analyze the stability of ẋ = Ax. In the operator-oriented approach, the well-

posedness of the interconnection of A and S ∈ R(Θ) is analyzed, where Θ is given as in Table 2.1 (a). On the

other hand, the IQC approach [26] consider the existence of a nontrivial (w, x) ∈ C2n such that w = Ax and

(w, x) ∈ IQC(Θ). Notice that in the later approach, an additional variable S does not appear. Of course, both

approach results in an LMI problem P > 0, ATP + PA < 0 for this simple example. However, the IQC approach

is potentially more flexible, since depending on the choice of Θ, (w, x) ∈ IQC(Θ) does not imply the existence

of S ∈ R(Θ) such that x = Sw. (Consider an example Θ = {−k diag(w⊥w⊥∗, x⊥x⊥∗) : k > 0}). When

this happens, it is not possible to write an input-output relation defined by an IQC cannot be expressed as an well-

posedness model. Thus, we restrict ourselves to the class of Hermitian sets Θ for which our approach based on the

well-posedness is equally strong as the IQC approach.

Definition 2 A Hermitian set Θ is said to be realizable if (w, x) ∈ IQC(Θ) implies the existence of S ∈ R(Θ) such

that x = Sw.

Fortunately both approaches are almost equally powerful because essentially all useful Hermitian sets, including the

ones in Table 2.1 and 2.2, are realizable.

2.5 Symmetric S-procedure and mutual losslessness property

It is known that the KYP lemma is derived as an application of a mathematical technique known as the S-procedure.

In this section, we propose a symmetric formulation of the S-procedure as a prelude step towards the KYP lemma. As

a starting point of this reformulation, we already employ a slightly generalized form of the S-procedure proposed in

[27] rather than its well-known form. A brief history and the motivation for the generalization of the S-procedure will

be discussed in Section 2.9.
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Let Ψ be a convex cone in Hn and Φ ∈ Hn. The S-procedure concerns the relationship between the following

conditions.

(I) ∃Ψ ∈ Ψ such that

Ψ + Φ < 0. (2.4a)

(II) For every nonzero complex vector ζ,

(ζ∗Ψζ ≥ 0 ∀Ψ ∈ Ψ)⇒ ζ∗Φζ < 0. (2.4b)

It is easy to see the implication (I)⇒(II) always holds. If the other direction holds as well, the S-procedure is said to

be lossless. Conditions for the S-procedure to be lossless have been studied in many literatures. A popular condition,

which has been a basis for modern proofs of the KYP lemma, is called rank-one separability [28][21].

Definition 3 Ψ ⊂ Hn is said to be rank-one separable if S(Ψ) is equal to the convex hull of S1(Ψ) where

S(Ψ) := {X ∈ Hn : X ≥ 0, X 6= 0, trΨX ≥ 0 ∀Ψ ∈ Ψ}

S1(Ψ) := {ζζ∗ ∈ Hn : ζ ∈ Cn, ζ 6= 0, ζ∗Ψζ ≥ 0 ∀Ψ ∈ Ψ}.

In [21], it is shown that an S-procedure (2.4) with an arbitrary Hermitian matrix Φ is lossless if and only if Ψ is

rank-one separable. However, it is important to notice that the exact condition can be relaxed if Φ is known to belong

to a restricted class of matrices. For example, the authors of [29] have introduced the notion of one-vector-lossless

sets, which is weaker than rank-one separability, but sufficient to prove that the S-procedure is lossless for matrices

Φ ≤ 0.

This indicates that the losslessness property of the S-procedure should be discussed as a matter of the relationship

between the set Ψ and the set Φ to which Φ belongs. To clarify this point, it is natural to introduce the following

generalization of the S-procedure, which has a symmetric structure with respect to Ψ and Φ:

(P1) ∃(Ψ,Φ) ∈ (Ψ,Φ) such that Ψ + Φ < 0.

(P2) There does not exist a nonzero complex vector ζ such that

ζ∗Ψζ ≥ 0 ∀Ψ ∈ Ψ and ζ∗Φζ ≥ 0 ∀Φ ∈ Φ

18
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In the original form of the S-procedures (2.4) can be interpreted as a special case of the new formulation in which one

of two Hermitian sets is a singleton (up to its positive multiples). In this thesis, we particularly refer to the convex

relaxation (P1) above of the condition (P2) the (symmetric) S-procedure. The symmetric structure suggests that the

condition characterizing losslessness of the new S-procedure above should be a symmetric relationship between Ψ

and Φ. This relationship can be further studied via dual conditions (negations) of (P1) and (P2).

(D1) There exists a nonzero X ≥ 0 such that

trΨX ≥ 0 ∀Ψ ∈ Ψ and trΦX ≥ 0 ∀Φ ∈ Φ

(D2) There exists a nonzero vector ζ such that

ζ∗Ψζ ≥ 0 ∀Ψ ∈ Ψ and ζ∗Φζ ≥ 0 ∀Φ ∈ Φ

To see that (D1) is the negation of (P1), one can use the Hahn-Banach separation theorem [30] as follows. Consider

the following convex cones in Hn.

N = {N ∈ Hn : N < 0}; M = {Ψ + Φ : Ψ ∈ Ψ,Φ ∈ Φ}.

Since N is open in the standard topology on Hn, and the negation of (P1) means that N and M are disjoint, there

exists a nonzero Hermitian matrix X and r ∈ R such that

trNX < r ≤ trMX ∀(N,M) ∈ (N ,M).

Since N andM are cones, we can take r = 0 without loss of generality. Then the above inequalities mean that there

exists a nonzero X ≥ 0 such that

tr(Ψ + Φ)X ≥ 0 ∀(Ψ,Φ) ∈ (Ψ,Φ).

This implies condition (D1). (Pick Φ = 0 to obtain the first condition of (D1), and Ψ = 0 for the second condition of

(D1).) The other direction (D1)⇒ ¬(P1) is easy to see. Thus (D1)⇔ ¬(P1).

Definition 4 Ψ and Φ are said to be mutually lossless if (P1)⇔(P2), or equivalently (D1)⇔(D2). Namely, the

symmetric S-procedure is lossless if and only if Ψ and Φ are mutually lossless.
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2.6 Mutual Losslessness Property and the KYP Lemma

The KYP lemma can be viewed as a direct application of the S-procedure. In the study of dynamical systems whose

transfer function is given by Ĝ = C(sI −A)−1B +D, Ψ and Φ above are often chosen to be

Ψ =


 A B

I 0


∗

Θ

 A B

I 0

 : Θ ∈ Θ

 , Φ =


 C D

0 I


∗

Π

 C D

0 I

 : Π ∈ Π

 (2.5)

where Θ ∈ H2n,Π ∈ H2m are convex cones. Now we are in position of formulating the KYP lemma as a systematic

way to verify well-posedness via a convex program. Apparently, the following form of the KYP lemma emphasizes

the symmetric structure observed in Section 2.1.

Theorem 1 (KYP Lemma) Let Θ and Π be realizable Hermitian sets. Then (I)⇒(II) holds. Moreover, (I)⇔(II) holds

if and only if Ψ and Φ are mutually lossless.

(I) There exists Θ ∈ Θ and Π ∈ Π such that

 A B

I 0


∗

Θ

 A B

I 0

+

 C D

0 I


∗

Π

 C D

0 I

 < 0. (2.6)

(II) The interconnection [M,Ω] is well-posed, where

M =

 A B

C D

 , Ω =

 R(Θ) 0

0 R(Π)

 .
Notice that condition (I) is verified by a conic program. Typically, this condition can be written in the form of LMIs,

whose feasibility can be checked by polynomial time algorithms such as semidefinite programming (SDP). On the

other hand, condition (II) means that

(S1, S2) : S1 ∈ R(Θ), S2 ∈ R(Π),det

I −
 A B

C D


 S1 0

0 S2


 = 0


is empty. There does not necessarily exist a polynomial time algorithm to check it, although checking the emptiness

of a semialgebraic set is known to be decidable [2]. Theorem 1 claims that (I) gives a sufficient condition to guarantee

the emptiness of the above set for any combination of Ψ and Φ. Moreover, the efficiently verifiable condition (I) is

equivalent to the emptiness of the above set if and only if Ψ and Φ are mutually lossless.
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Proof: By the Hahn-Banach separation theorem, the negation of (I) is the following condition:

(I’) There exists a nonzero matrix X ≥ 0 such that

tr

 A B

I 0


∗

Θ

 A B

I 0

X ≥ 0 ∀Θ ∈ Θ, tr

 C D

0 I


∗

Π

 C D

0 I

X ≥ 0 ∀Π ∈ Π.

This is a necessary condition for the following (II’), and (I’)⇔(II’) holds if and only if Ψ and Φ are mutually lossless.

(II’) There exists a nonzero vector

 x1

x2

 such that

x1

x2


∗ A B

I 0


∗

Θ

A B

I 0


x1

x2

 ≥ 0 ∀Θ ∈ Θ,

x1

x2


∗ C D

0 I


∗

Π

C D

0 I


x1

x2

 ≥ 0 ∀Π ∈ Π.

Hence it is left to prove that

(II’) ⇔ [M,Ω] is ill-posed.

(⇒): By writing w1 = Ax1 +Bx2, w2 = Cx1 +Dx2, (II’) means

w1

x1


∗

Θ

w1

x1

 ≥ 0 ∀Θ ∈ Θ,

w2

x2


∗

Π

w2

x2

 ≥ 0 ∀Π ∈ Π.

Namely, (w1, x1) ∈ IQC(Θ) and (w2, x2) ∈ IQC(Π). By the realizability assumption on Θ and Π, there exists

S1 ∈ R(Θ) and S2 ∈ R(Π) such that x1 = S1w1 and x2 = S2w2. This leads to


I

−A −B

−C −D

−S1 0

0 −S2

I





w1

w2

x1

x2


= 0,



w1

w2

x1

x2


6= 0.

This implies that [M,Ω] is not well-posed.

(⇐): The ill-posedness of [M,Ω] implies that

inf
Ω∈Ω

∥∥∥∥∥∥∥
 I −M

−Ω I


 w

x


∥∥∥∥∥∥∥ = 0 for some

 w

x

 6= 0.
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Figure 2.1: Two different ways to interpret the LMI condition (2.6)

Such vectors (w, x) must satisfyw = Mx. Hence, the above condition implies infΩ∈Ω ‖(I − ΩM)x‖ = 0 for some x 6=

0. Therefore, there exist sequences {S(k)
1 } ∈ R(Θ), {S(k)

2 } ∈ R(Π) such that

I −
 S

(k)
1 0

0 S
(k)
2


 A B

C D



 x1

x2

 =

 u
(k)
1

u
(k)
2


and limk→∞ u

(k)
1 = 0, limk→∞ u

(k)
2 = 0. Since S(k)

1 ∈ R(Θ) for each k,

lim
k→∞

w∗1

 I

S
(k)
1


∗

Θ

 I

S
(k)
1

w1 ≥ 0, ∀Θ ∈ Θ,∀w1.

In particular, by taking w1 = Ax1 +Bx2, and noticing that S(k)
1 (Ax1 +Bx2) = x1 − u(k)

1 , we have

lim
k→∞

w∗1

 I

S
(k)
1


∗

Θ

 I

S
(k)
1

w1 = lim
k→∞

 Ax1 +Bx2

x1 − u(k)
1


∗

Θ

 Ax1 +Bx2

x1 − u(k)
1



=

 x1

x2


∗  A B

I 0


T

Θ

 A B

I 0


 x1

x2

 ≥ 0 ∀Θ ∈ Θ.

Therefore we obtained the first condition of (II’). Similarly, noticing that S(k)
2 ∈ R(Π) for each k and using the

equality S(k)
2 (Cx1 +Dx2) = x2 − u(k)

2 , we obtain the second condition of (II’).

In many literatures (e.g., [28][21]), the KYP lemma is stated between a matrix inequality condition such as (2.6) and

a frequency domain inequality (FDI). Theorem 1, on the other hand, deals with the well-posedness condition directly

instead of an FDI, since in many robust stability and performance analyses, the desired system theoretic property can

be written as a well-posedness condition.
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The KYP lemma, stated in the form of Theorem 1, allows two different interpretations (Figure 2.1). Assuming that a

transfer function G(Λ) = C(I − ΛA)−1ΛB + D is well-defined on R(Θ). In this interpretation, Λ = s−1I is the

frequency variable. Then the LMI (2.6) means that the interconnection of G(Λ) and an uncertainty ∆ is well-posed. It

is also possible to consider a transfer function G̃(∆) = B(I −∆D)−1∆C + A. In this interpretation, the LMI (2.6)

means that the interconnection of G̃(∆) and Λ is well-posed. This implies thatR(Θ) andR(Π) play symmetric roles,

although conventionally the former is considered as the frequency domain and the latter is considered as the space of

uncertainties.

2.7 Symmetric view on the KYP Lemma

Theorem 1 has a clear symmetric structure with respect to Θ and Π. In the next examples, we show that two seemingly

different questions are in fact the same question, after noticing this symmetry.

2.7.1 Continuous vs. discrete time models and positive realness vs. bounded realness

The bounded real lemma and the positive real lemma are the two most important special cases of the KYP lemma.

LMI conditions for positive realness and the bounded realness can be obtained by choosing Π in (2.6) as

Bounded realness: Πb =

 I 0

0 −I

 , Positive realness: Πp =

 0 I

I 0

 .
In each case, continuous and discrete time analysis correspond to the choice of Θ as

Discrete time: Θd =

 P 0

0 −P

 , Continuous time: Θc =

 0 P

P 0

 .
With the symmetry considered in Section 2.7 in mind, consider the congruence transformation T ∗ΘcT = Θd where

T =
1√
2

 I −I

I I

 .
This operations amounts to the Möbius transformation s = z−1

z+1 between frequency variables, and converts the

continuous-time frequency domain into the discrete-time one ((a) and (c) in Table 2.1). The same transformation

T ∗ΠpT = Πb applied to the other term can be viewed as a conversion of the small gain IQC into the passivity IQC

((f) and (h) in Table 2.2). The meaning of these two operations are flipped when the LMI (2.6) is interpreted through

system G̃ instead of G (Figure 2.1).
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2.7.2 Diagonal Lyapunov functions vs. structured singular values

Distributed control has been actively studied in the past few decades. It is known, however, that a certain class

of control design with imperfect information is NP-hard [2]. Hence, most of the research effort has been made to

uncover the class of distributed control problems for which a tractable algorithm is available to obtain the solution, or

at least to reasonably approximate the solution with minimal conservatism [31, 32, 33, 34, 32]. A popular approach,

especially in the LMI-based synthesis for distributed state feedback control, is to use diagonal quadratic control-

Lyapunov functions. (If a stable linear dynamical system has a diagonal Lyapunov function, the system is said to be

diagonally stable.) If the control-Lyapunov function is assumed to be diagonal, then a simple but critically important

technique of change of variables is available that converts the original Bilinear Matrix Inequality (BMI) condition into

an LMI condition (we will review this technique in Section 4.5.2). In this way, a distributed state feedback synthesis

is obtained by a tractable algorithm.

Of course, requiring diagonal stability rather than mere stability is solely for the sake of computational benefit in the

control design process, and there is no physical justification to do so. As a result, this assumption becomes the source

of conservatism in the distributed control design. Therefore, a quantitative understanding of the conservatism gap

introduced by the use of diagonal Lyapunov functions is of natural interest.

The symmetric interpretation of parametrized Lyapunov functions and IQCs allows us to relate this question to the

structured singular value problems. More precisely, the following two seemingly different problems are in fact pre-

cisely the same problem.

Q1: Suppose an m-input-m-output discrete time system G given by

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k)

is interconnected to the scalar uncertainty u(k) = δy(k), |δ| < 1. The internal stability of this interconnection

is guaranteed if there exist positive definite (full) matrices P and Q satisfying (2.1). One may wish to have not

only stability but also diagonal stability by additionally restricting P to be diagonal, possibly for the distributed

control purpose as discussed above. How much more restrictive is it to require diagonal stability rather than

mere stability?

Q2: Suppose an m-input-m-output discrete time system H given by

x(k + 1) = Dx(k) + Cu(k), y(k) = Bx(k) +Au(k)

24



www.manaraa.com

LMI condition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∃ 𝑃 > 0 : Full 
    Q > 0 : Full 

∃ 𝑃 > 0 : Diagonal 
    Q > 0 : Full 

∃ 𝑃 = 𝑘𝐼 > 0  
    Q > 0 : Full 

satisfying LMI (2.1) 

𝜌1: stability radius for 
scalar uncertainty  𝑢 = 𝛿𝑦. 

𝜌2: stability radius for 
channel-wise (structured) 
uncertainties  𝑢𝑖 = 𝛿𝑖𝑦𝑖. 

𝜌3: stability radius for full-
block uncertainty  𝑢 = ∆𝑦. 

Lower bound of 𝜌2 

𝐺 is stable: 𝑉 = 𝑥𝑇𝑃𝑥 
is a Lyapunov function. 

𝐺 is stable: 𝑉 = 𝑥𝑇𝑃𝑥 
is a diagonal Lyapunov 
function. 

𝐺 is stable: 𝑉 = 𝑥 2 
is a Lyapunov function. 

Interpretation #1 Interpretation #2 

Figure 2.2: Connections between diagonal stability conditions and the shape of uncertainty.

is interconnected to the scalar uncertainty u(k) = δy(k), |δ| < ρ. The existence of positive definite (full)

matrices P and Q satisfying (2.1) guarantees that the stability radius is upper bounded by 1. Now, suppose that

the uncertainty constant is allowed to be different on each channel, i.e., ui(k) = δiyi(k), |δi| < ρ. To see if 1

remains to be an upper bound of the stability radius, one may apply the diagonal scaling technique to compute

the upper bound of the structured singular values. This means that one additionally restrict P to be diagonal

and check the feasibility of the LMI (2.1). How much more difficult to prove that 1 is an upper bound of the

stability radius for the scaler uncertainty u(k) = δy(k) as compared to the channel-wise (diagonally structured)

uncertainty ui(k) = δiyi(k)?

This observation may suggest that the study of conservatism in robust control theory can be directly applied to the

conservatism study for the distributed control theory.
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2.8 Generalization of the mutual losslessness

So far, we have defined the notion of mutual losslessness as a relationship between two sets of Hermitian matrices.

However, there is a straightforward generalization of the definition to the relationship among multiple sets of Hermitian

matrices as follows. SupposeN -tuple of sets of Hermitian matrices Ψ1, · · · ,ΨN ⊂ Hn are all convex cones. Then the

N -tuple of convex cones (Ψ1, · · · ,ΨN ) is said to be mutually lossless if the following two conditions are equivalent:

(D1’) There exists a nonzero X ≥ 0 such that

trΨ1X ≥ 0 ∀Ψ1 ∈ Ψ1, trΨ2X ≥ 0 ∀Ψ2 ∈ Ψ2, · · · trΨNX ≥ 0 ∀ΨN ∈ ΨN .

(D2’) There exists a nonzero vector ζ such that

ζ∗Ψ1ζ ≥ 0 ∀Ψ1 ∈ Ψ1, ζ∗Ψ2ζ ≥ 0 ∀Ψ2 ∈ Ψ2, · · · ζ∗ΨNζ ≥ 0 ∀ΨN ∈ ΨN .

If each of Ψi are finitely generated, i.e., it is a convex hull of a finite number of rays {kMij : k ≥ 0,Mij ∈ Hn}, then

without less of generality, the above condition can be written in such a way that N is finite and each of Ψi is a ray of

a Hermitian matrix.

2.9 Discussion

2.9.1 Some history of the S-procedure

A theoretical key component of the S-procedure can be traced back to the work of O. Toeplitz and F. Hausdorff on the

numerical range of a square matrix in the years 1918-1919. Given two Hermitian matrices Ψ1,Ψ2 ∈ Hn and a vector

function

π(z) = [σ1(z) σ2(z)], σi(z) = z∗Ψiz, (2.7)

the Hausdorff-Toeplitz theorem implies that the set {π(z) : ‖z‖ = 1, z ∈ Cn} is convex in R2. Indeed, a stronger

result is known today for the complex field: such a set is convex in R3 for three Hermitian forms and n > 2. For

the real field, Dines proved in 1941 that the set {π(z) : z ∈ Rn} is a convex cone, when Ψ1 and Ψ2 in (2.7) are real

symmetric matrices. In 1971, Yakubovich [35] used these results to prove that the following form of the S-procedure

is lossless whenH = Rn and N = 2, orH = Cn and N = 3:
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(I) There exists τk ≥ 0, k = 2, · · · , N such that

σ1(z) +

N∑
k=2

τkσk(z) ≤ 0, ∀z ∈ H (2.8a)

(II) There is no z ∈ H such that

σ1(z) > 0 and σk(z) ≥ 0 ∀k = 2, · · · , N (2.8b)

.

The above convexity results play a crucial role in his proof, so that the geometric separation of the image of π(z) and

the positive orthant implies the existence of a separating hyperplane z1 + τ2z2 + · · · + τNzN = 0. Much later, the

S-procedure on the real field is proved to be lossless for N = 3 by Polyak [36] by making an additional assumption,

using the convexity result obtained by Brickman.

The S-procedure became popular in the system and control theory since Yakubovich’s pioneering work in this research

domain. However, it is known that a similar method is used in the control theory by Lur’e and Postnikov [37] as early

as 1944. In 1990’s, Megretski and Treil [14] proved that the S-procedure is lossless for any finite number N on the

infinite dimensional spaceH = L2. More thorough coverage of the history of the S-procedure and its applications can

be found in [22, 38, 39] and references therein.

2.9.2 What’s new about the mutual losslessness?

In a slightly different form, the S-procedure can be expressed as:

(I) ∃Γ ∈ Γ such that Γ < 0.

(II) There does not exist ζ ∈ H, ζ 6= 0 such that ζ∗Γζ ≥ 0 ∀Γ ∈ Γ

where Γ is a convex cone in the space of Hermitian matrices. Notice that the S-procedure of the form of (2.8)

corresponds to the case in which Γ is a cone Γ = {
∑N
k=1 τkΨk : τk ≥ 0} generated by a set of given finite set of

Hermitian matrices Ψk. Namely, Γ is a polyhedral cone in the space of matrices.

However, we have already seen in previous sections that the set Γ appearing in the simplest system analysis is already

not polyhedral. For example, in the dissipativity analysis (2.1), Γ can be written as a Minkowski sum Γ = Ψ + Φ of

27



www.manaraa.com

two convex cones

Ψ=


 A B

I 0


∗ P 0

0 −P


 A B

I 0

 : P > 0

 , Φ=


 C D

0 I


∗ Q 0

0 −Q


 C D

0 I

 : Q > 0

 .

Namely, each of them is a spectrahedral cone. Similarly, many of the convex cones we frequently use in the well-

posedness analysis are in fact spectrahedra rather than polyhedra, because they are often parametrized by positive

definite matrices.

It is known by the Minkowski-Weyl Theorem [40] that a convex cone in Rn is finitely generated if and only if it is a

polyhedron. This means that, if one wants to formulate the well-posedness analysis in the classical framework of the

S-procedure (2.8), the number of constraintsN often has to be infinity. This gave a motivation in [27] to consider more

general cones as the constraint set in the S-procedure. This leads to the formulation (2.4) from which we have started

our discussion. Notice that in (2.4), the set Ψ need not be polyhedral. The notion of mutual losslessness is obtained

as the further generalization in this direction to emphasize the symmetric relationships among multiple convex cones.

In principle, the notion of mutual losslessness can be used in a broader context than the KYP lemma. For example, it

can be used to describe the conservatism in the uncertain semidefinite programs considered in [41].

2.10 Special Cases

2.10.1 Finite frequency KYP lemma

Let Ĝ(s) = C(sI−A)−1B+D be a stable transfer function, and γ be the largest gain of the frequency response over

a finite frequency range 0 ≤ ω1 ≤ ω ≤ ω2 ≤ ∞, i.e.,

γ = sup
ω∈[ω1,ω2]

‖Ĝ(jω)‖.

Notice that an upper bound of γ can be confirmed by checking the well-posedness of [M,Ω], where

M =

 A B

C D

 , Ω =

 Λ 0

0 ∆



Λ = { j
ω
I : ω1 ≤ |ω| ≤ ω2}, ∆ = {∆ ∈ Cm×m : ‖∆‖ ≤ 1/γ}.

The above domain ∆ can be expressed as ∆ = R(Π) where Π is chosen as in (f) in Table 2.2. One can also find

an appropriate Θ so that Λ = R(Θ). A choice of such Θ for the case with ω2 = ∞ (one is interested in the entire
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frequency region higher than ω1) is given in (e) in Table 2.1, but it is also possible to find a corresponding Θ for the

low frequency range (0 ≤ ω ≤ ω2 < ∞) and middle frequency range (0 < ω1 ≤ ω ≤ ω2 < ∞). By applying the

KYP lemma (Theorem 1), one can derive a convex program whose feasibility guarantees well-posedness. However, it

is not immediately clear whether this KYP lemma is lossless.

A breakthrough result is given by the theory of the Generalized KYP lemma [21, 27]. In [27], it is shown that the set

of Hermitian matrices

Ψ =


 A B

I 0


∗

Θ

 A B

I 0

 : Θ ∈ Θ

 , Θ =


 Q P

P −ω2
0Q

 :
P ∈ Hn

Q > 0

 (2.9)

is in fact rank-one separable1 (Definition 3). Since rank-one separable set is mutually lossless with any rays of a

Hermitian matrix, we have the mutual losslessness between Ψ and Φ, where

Φ =


 C D

0 I


∗

Π

 C D

0 I

 : Π ∈ Π

 , Π = {κΠ0 : κ > 0} . (2.10)

Since (2.10) includes (e) in Table 2.1 as a special case, the above gain analysis over a finite frequency range can be

performed without conservatism.

Unfortunately, our framework does not provide an alternative proof for this specific mutual losslessness so we have

to “borrow” a proof from the original papers [21, 27]. Our purpose of revisiting this example was to show that the

exactness of the finite frequency KYP lemma can be understood via the general frameworkof mutual losslessness.

2.10.2 Image processing

When the mutual losslessness does not hold between Ψ and Φ, Theorem 1 holds only in one direction, i.e., the LMI test

is only a sufficient condition for the well-posedness. Let us consider such a situation in an image processing example.

Due to the two dimensional nature of image signals, it is intuitive to consider every process of image manipulation as

a mapping from the input image u(i, j) to the output image y(i, j), which are both 2-dimensional signals with vertical

and horizontal coordinate (i, j). In his paper [42] in 1975, Robert Roesser proposed an attractive linear state space

1Although (2.9) corresponds to the analysis of high frequency region, it is also shown that the rank-one separability holds for the low frequency
analysis and the middle frequency analysis as well.
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model for linear image processing, which is now known as 2-D model, n-D model, or the Roesser’s model.

 xh(i+ 1, j)

xv(i, j + 1)

 = A

 xh(i, j)

xv(i, j)

+Bu(i, j)

y(i, j) = C

 xh(i, j)

xv(i, j)

+Du(i, j)

Two portions of the state variable, xh(i, j) and xv(i, j), are to deliver information horizontally and vertically. In one

view, this is a natural extension of the state space model from the first order linear ordinary differential equation to the

first order linear partial differential equation. Image restoration methods from noisy observations are proposed in [43]

by applying Kalman filter generalized to two dimensional settings. Other authors [44] concerns the worst case gain of

the above system, and proposes H∞ filtering and H∞ control methods. Suppose one wants to ensure that the energy

of the output image is bounded by the energy of the input image, i.e., ‖y‖ ≤ ‖u‖. It is a straightforward application

of the main loop theorem that this is equivalent to saying that the interconnection [M,Ω] is well-posed, where

M =

 A B

C D

 , Ω =

 Λ 0

0 ∆


and

Λ =


 e−jωhI 0

0 e−jωvI

 : ωh, ωv ∈ R

 , ∆ = {∆ ∈ Cm×m : ‖∆‖ ≤ 1}.

In the above, e−jωh and e−jωv are the (spatial) frequency variables for the discrete Fourier transform in the horizontal

and the vertical coordinates. Notice that Theorem 1 has a flexibility to perform the well-posedness analysis for this

system. The KYP lemma for 2D-systems considered in [25] is obtained as a special case of Theorem 1 by properly

specifying Θ as the item (d) in Table 2.1 in p.16. However, if the set Ψ in (2.5) is defined using this Θ, and the set

Φ is defined using a ray Π = {τΠ0 : τ > 0} of a fixed Hermitian matrix Π0, then the mutual losslessness does not

hold between Ψ and Φ in general. This is essentially the reason why the LMI test proposed in [25] is only a sufficient

condition.

2.10.3 Large-scale dynamical systems

The 2-D Roesser’s model appears in a slightly different context as well. Consider a situation where identical dynamical

systems are interconnected to each other in the spatially invariant manner as in Figure 2.3. Such a model naturally

arises in the study of dynamical behavior of a vehicle platoon, a constellation of satellites, and the formation flight

30



www.manaraa.com

Figure 2.3: Spatially invariant systems

of micro UAVs. It also shows up as a discrete approximation of distributed parameter systems. State space of such

systems evolves in time directions as well as the spatial direction. The evolution in the time direction is indexed by

t ∈ R, while the evolution in the spatial direction is indexed by s ∈ Z. If each unit has an input channel d(s, t) and an

output channel z(s, t), the state space is modeled as the following 2-D system:

 ẋ(t, s)

w(t, s+ 1)

 = A

 x(t, s)

w(t, s)

+Bd(t, s)

z(t, s) = C

 x(t, s)

w(t, s)

+Dd(t, s)

As in the previous example, the H∞ performance of this systems is analyzed via the well-posedness of the intercon-

nection [M,Ω], where

M =

 A B

C D

 , Ω =

 Λ 0

0 ∆


and

Λ =


 sI 0

0 e−jωI

 : s ∈ C̄+, ω ∈ R

 , ∆ = {∆ ∈ Cm×m : ‖∆‖ ≤ 1}.

In the above, s is the frequency variable for the Laplace transform of x(t, s) (as a function of time t), and e−jω is

the frequency variable for the discrete Fourier transform of x(t, s) (as a function of space s). One can find a set of

Hermitian matrices Θ such that Λ = R(Θ). Unfortunately, as in the previous example the mutual losslessness does

not hold between the corresponding Ψ and Φ in general, and the KYP lemma yields an LMI condition which is only

sufficient for the well-posedness.
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2.10.4 µ-analysis

The problem of computing the structured singular value µ of a given complex matrix is NP-hard [45, 15]. The gap

between µ and its small-gain based upper bound can be understood with a combination of Hermitian sets Ψ and Φ

that fail to satisfy the strong mutual losslessness property. The structured singular value of G ∈ Cm×m is defined by

µΠ(G) =
1

min{|τ | : det(I − τ∆G) = 0,∆ ∈ R(Π)}
.

Now consider the problem of determining whether

sup
λ∈C̄+

µΠ(Ĝ(s)) < 1. (2.11)

Condition (2.11) is indeed the well-posedness condition of the interconnection [M,Ω] where

M =

 A B

C D

 , Ω =

 R(Θ) 0

0 R(Π)


in which Θ and Π are specified by item (a) in Table 2.1 and item (g) in Table 2.2. Thus it can be readily seen from

Theorem 1 that the existence of Θ ∈ Θ and Π ∈ Π such that

 A B

I 0


∗

Θ

 A B

I 0

+

 C D

0 I


∗

Π

 C D

0 I

 < 0 (2.12)

is a sufficient condition for (2.11). However, the mutual losslessness does not hold in general between the sets of

Hermitian matrices Ψ and Φ defined as in (2.5) using this choice of Θ and Π. Hence (2.12) is only a sufficient

condition for (2.11), and the LMI test (2.12) only corresponds to computing a convex upper bound of µ using a

diagonal scaling technique. This is understandable given the computational difficulty of µ.

2.10.5 Bounded real lemma for positive systems

For positive systems, it is widely known that stability and diagonal stability are equivalent notions. More precisely,

a matrix A is Hurwitz if and only if there exists a diagonal matrix P > 0 such that ATP + PA < 0 provided

A is a Metzler matrix (all off-diagonal entries are non-negative). A proof can be found, for example, in [46]. The

diagonal stability can be further extended to the bounded realness test [47]. Suppose that a transfer function Ĝ(s) =

C(sI − A)−1B + D has internally positive realization, i.e., A is Metzler and B,C,D are entry-wise non-negative
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matrices. Then ‖Ĝ‖∞ < 1 if and only if there exists a diagonal matrix P > 0 such that

 A B

I 0


T  0 P

P 0


 A B

I 0

+

 C D

0 I


T  I 0

0 −I


 C D

0 I

 < 0.

The losslessness of this bounded real lemma strongly relies on the fact that the corresponding Ψ and Φ are mutually

lossless. A complete proof is given in Theorem 8 later.

2.11 Conclusion

We proposed a symmetric formulation of the S-procedure and the KYP lemma, and showed that an algebraic condition

called mutual losslessness among the sets of Hermitian matrices is the exact condition for the S-procedure and the KYP

lemma to be lossless. The proposed form of the KYP lemma was shown to have sufficient generality to unify some of

the recent extensions of system analysis tools. As a result, the notion of mutual losslessness can explain the lossy and

lossless properties of various types of KYP lemmas in a single framework.

However, there is so far no general method for proving the mutual lossless property. Therefore in many particular anal-

ysis problems, we need to rely on existing individual techniques to prove losslessness. For example, in order to prove

the mutual losslessness for the finite frequency KYP lemma (Section 2.10.1), we still have to rely on the technique

in [27]. Finding a practically useful combination of Hermitian sets that satisfies the mutual lossless properties thus

remains an important future research direction. Nevertheless, we believe that this approach opens new perspectives

for understanding and proving losslessness of the S-procedure and the KYP lemma. It is also an interesting future

work to consider how the symmetric formulation of the KYP lemma is related to several different types of recent

KYP like lemmas besides the ones considered in 2.10. It will also be necessary to consider further generalizations to

accommodate various types of recent results.

33



www.manaraa.com

Chapter 3

Cone-Preserving Transfer Functions

In the previous chapter, we have considered a general method to analyze stability and performance of linear dynamical

systems, using the well-posedness model and the KYP lemma. In this chapter, we will focus on a special class of linear

dynamical systems for which particularly efficient methods are available to prove their stability and performances. The

class of dynamical systems we focus on in this chapter is the class of “cone-preserving dynamical systems”. More

precisely, we focus on a class of square MIMO transfer functions that map a proper cone in the space ofL2 input signals

to the same cone in the space of output signals. The main purpose of this chapter is to show that transfer functions in

this class have the “DC-dominant” property: the spectral radius of the operator is attained by a DC input signal and

hence, the dynamic stability of the interconnected transfer functions is guaranteed solely by the static gain analysis.

Using this property, we can also prove delay-independent stability of cone-preserving delay differential equations. An

interesting by-product of this consideration is an alternative proof of the delay-independent mean-square stability of a

multi-dimensional geometric Brownian motion.

3.1 Introduction

In this chapter, we tune our attention to the special class of linear dynamical systems that possess the “cone-preserving”

property. For instance, the following examples are of our interest:

(a) (Positive systems): If A is a Metzler matrix (all off-diagonal entries are nonnegative) and B is a square entry-

wise nonnegative matrix, the following system defines a map G : u 7→ x such that x(t) ≥ 0 ∀t ≥ 0 as long as

u(t) ≥ 0 ∀t ≥ 0:
d

dt
x(t) = Ax(t) +Bu(t), x(0) = 0.

Thus G leaves the positive orthant in Rn invariant.
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(b) (Covariance dynamics): The following matrix differential equation defines a map G : U 7→ X such that

X(t) ≥ 0 ∀t ≥ 0 as long as U(t) ≥ 0 ∀t ≥ 0.

d

dt
X(t) = AX(t) +X(t)AT +BU(t)BT , X(0) = 0

Thus G leaves the positive semidefinite cone in Rn×n invariant. We will see in Chapter 3 that the above systems

represents dynamics of covariance matrix of the multi-dimensional geometric Brownian motion.

It should be noted that both of the above examples belong to what is known as the monotone dynamical systems

[49, 50], which are widely studied in various disciplines ranging from pure mathematics to system biology. In this

chapter, we particularly focus on their frequency domain property, and uncover their “DC-dominant” property.

Recently, it is pointed out by several papers including [51, 52, 74] that some important features of internally positive

transfer functions, the most apparent class of monotone systems, can be captured by looking at their static gains only.

For example, if G defines an internally positive systems, the maximum singular value of Ĝ(jω) attains its maximum

at ω = 0 and hence its H∞ norm coincides with the maximum singular value of Ĝ(0). This peculiar property

is certainly valuable, since it eliminates a need for the “frequency sweep” often required for the system analysis in

generic theories and allows one to focus only on static gains of the system. In [52], a MIMO transfer function such that

|Ĝik(jω)| ≤ Ĝik(0)for all ω ∈ R is referred to as a positively dominated system, and its properties are investigated.

This naturally raises a question: Does this property hold for more general cone-preserving linear systems? It turns out

that the same H∞ norm property fails to hold when the positive orthant is replaced with more general cones. As we

will see, however, a weaker but similar property remains to hold for more general cone-preserving systems: the spectral

radius of G(jω) attains its maximum at ω = 0. We refer to this as the DC-dominant property. This can be seen as a

generalization of the same property of positive systems to more general cone-preserving systems, in a similar fashion

as the Perron-Frobenius theorem regarding positive matrices is extended to the following Krein-Rutman theorem (e.g.,

[53]):

Theorem 2 (Krein-Rutman) Let G be a compact linear operator on a Banach space X . Suppose that GK ⊆ K,

where K is a closed generating cone1 in X . If the spectral radius ρ(G) of G is positive, then there exists a nonzero

vector x ∈ K such that Gx = ρ(G)x.

Not surprisingly, some of our results follow as implications of the Krein-Rutman theorem. The DC-dominant property

is compactly stated in Theorem 3 in Section 3.2. This property further implies that the dynamic stability of the
1A cone K is said to be generating if X = K −K.
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feedback interconnection of cone-preserving transfer functions follows solely from the spectral radius condition on

their static gains, which is certainly untrue for general linear systems. This observation is summarized in Theorem 4 in

Section 3.5 as the “small gain theorem for cone-preserving systems”. It serves as the basis for the stability analysis of

linear differential equations with cone preserving property. These two theorems are deemed to be the main results in

this chapter. It should be noted that these results only depend on input-output properties of cone-preserving operators

and, as such, are realization independent.

Of course, the standard theory of linear dynamical system is entirely applicable to the class of stability analysis prob-

lems we consider in this chapter. Nevertheless, there is a value in developing a specialized theory for cone preserving

linear systems, mainly due to the additional attractive properties that cone preserving systems possess. Moreover, cone-

preserving dynamical systems are ubiquitous in real world: dynamics of traffic flow, algorithms involving stochastic

matrices such as PageRank, economic study through Leontief’s input-output analysis are all naturally modeled as a

positive system. Linear systems preserving the positive definite cone routinely appear in statistics, signal processing

and filtering algorithms concerned with dynamics of error covariances, as well as in quantum systems [48]. We believe

that our main theorem has an advantage over the standard linear systems theory and simplifies the stability analysis of

such systems by explicitly exploiting their DC-dominant property.

This chapter is organized as follows: Elements of operator theory and functional analysis are introduced in Section

3.2. Definition and basic results on monotone systems are reviewed in Section 3.3. In Section 3.4, we show the DC-

dominant property of cone-preserving transfer functions that will be used to show our main results in Section 3.5. Two

examples of cone-preserving systems that preserve the positive orthant and the positive semidefinite cone are shown in

Section 3.6. We further investigate the property of “delay-independent” stability of cone-preserving systems in Section

3.7, which gives an alternative proof of the delay-independent mean square stability of the geometric Brownian motion

in Section 3.8.

3.2 Cone-preserving Operators

Let Rn[0,∞) be the vector space of Rn-valued functions defined on [0,∞). Denote by L2[0,∞) ⊂ Rn[0,∞) the

space of square integrable functions

L2[0,∞) = {v ∈ Rn[0,∞) :

∫ ∞
0

‖v(t)‖2dt < +∞}.

It is well known that there is an isomorphism between the space of linear time invariant operators from L2[0,∞) to

itself and the space of transfer functions in the Hardy space H∞ (e.g., [13], Theorem 3.30). It can be shown (e.g.,
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[12]) that the induced norm is computed by

‖G‖∞ = sup
s∈C̄+

‖Ĝ(s)‖ = ess sup
ω∈R
‖Ĝ(jω)‖.

In what follows, when the “hat” symbol is used for signals, it represents their Laplace transforms. If “hat” is used for

operators, it indicates transfer functions on the Laplace domain. In the above expression, Ĝ(s) is a complex matrix

valued function of s.

Let K ⊂ Rn be a proper cone2. We consider a cone in L2[0,∞) defined by

LK2 [0,∞) := {v ∈ L2[0,∞) : v(t) ∈ K a.e.}

where “a.e.” is respect to the Lebesgue measure on [0,∞). We also define a space of maps preserving LK2 [0,∞) by

HK∞ := {G ∈ H∞ : GLK2 [0,∞) ⊆ LK2 [0,∞)}.

It is shown in Lemma 3 below that the spaceHK∞ is complete. Let PT be the truncation operator defined by

(Ptv)(t) =


v(t) 0 ≤ t ≤ T

0 otherwise
.

The extended spaces L2e[0,∞) and LK2e[0,∞) are

L2e[0,∞)={v ∈ Rn[0,∞) : PT v∈L2[0,∞) ∀0≤T <∞}

LK2e[0,∞)=
{
v ∈ Rn[0,∞) : PT v∈LK2 [0,∞) ∀0≤T <∞

}
.

Operators inH∞ have a natural causal extension to operators from L2e[0,∞) to itself ([54], Section 2.4). This allows

us to write w = Gv for G ∈ H∞ , v ∈ L2e[0,∞) (or G ∈ HK∞, v ∈ LK2e[0,∞)) to mean that w satisfies

PTw = PTGPT v ∀0 ≤ T <∞.

Thus G ∈ H∞ is bounded not only on L2[0,∞) but also on L2e[0,∞) 3. It is easy to show that G ∈ HK∞ if and only
2A cone K is said to be proper if it is convex (x, y ∈ K;α, β ≥ 0 ⇒ αx + βy ∈ K), pointed (K ∩ (−K) = {0}), closed and solid

(intK 6= φ).
3Boundedness is understood in an extended sense, as the boundedness of every restriction PTL2 → PTL2, whose induced norms are uniformly

bounded with respect to T .
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if its causal extension satisfies GLK2e[0,∞) ⊆ LK2e[0,∞). Finally, it is elementary to prove that x̂(0) ∈ K is necessary

if x ∈ LK2e[0,∞), and that Ĝ(0)K ⊆ K if G ∈ HK∞.

The spectrum of a square matrix M and related quantities are defined by

spec(M) := {λ ∈ C : λI −M is a singular matrix.}

ρ(M) := max{|λ| : λ ∈ spec(M)} (Spectral radius)

µ(M) := max{Re λ : λ ∈ spec(M)} (Spectral abscissa).

Similarly, we also define the spectrum and the spectral radius for operators inH∞ by

spec(G) := {λ ∈ C : λI −G is not invertible inH∞.}

ρ(G) := max{|λ| : λ ∈ spec(G)}.

It can be shown that a bounded linear operator on a Banach space has a non-empty, closed, and bounded spectrum

([55] Theorem 1.2.11), which allows us to use max rather than sup in the above definition. The spectrum of the

operator G ∈ H∞ can also be written as

spec(G) =
{
λ ∈ C : A matrix valued function λI − Ĝ(s) is not invertible inH∞.

}
=
{
λ ∈ C : There exists s ∈ C̄+ such that λI − Ĝ(s) is a singular matrix.

}
=
⋃
s∈C̄+

{
λ ∈ C : λI − Ĝ(s) is a singular matrix.

}
=
⋃
s∈C̄+

spec(Ĝ(s)). (3.1)

3.3 Monotone Dynamical Systems

The notion of monotonicity (see [50, 49] and references therein) can be defined on a wide class of nonlinear systems.

Although our focus in this chapter is input-output behaviors of linear monotone systems, their internal descriptions

(state space models) are often useful to understand their properties.

Assume that we are given a proper cone K ⊂ Rn, which endows Rn with a partial ordering ≥K . We will drop

subscripts from inequality signs and simply write≥when there is no danger of confusion. Let us consider a dynamical
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system of the form

ẋ(t) = f(x(t)), x(0) = x0. (3.2)

Here, we assume that the function f : Ω→ Rn is Lipschitz continuous on some open subset Ω containing K, and that

a global solution x(·, x0, f) : R+ → Rn exists. A dynamical system (3.2) is monotone (with respect to K) if

x1 ≥ x2 ⇒ x(t, x1, f) ≥ x(t, x2, f)∀t ≥ 0. (3.3)

Let K∗ denote the dual cone of K. A function f is said to be quasimonotone (see e.g., [49]) if

x1 ≥ x2, 〈η, x1〉 = 〈η, x2〉 , η ∈ K∗ ⇒ 〈η, f(x1)〉 ≥ 〈η, f(x2)〉 .

Intuitively, this condition means that the vector field flows inward on the boundary of K. It is known that (3.2) is

monotone if and only if f is quasimonotone. If f is a linear function of the form of f(x) = Ax, the quasimonotonicity

of f is equivalent to the cross-positivity (defined in [56]) of the matrix A on K 4. The following Lemma is another

generalization of the Perron-Frobenius Theorem.

Lemma 1 ([56], Theorem 6) Let K ⊂ Rn be a proper cone and let A be cross positive on K. Then µ(A) is an

eigenvalue of A and a corresponding eigenvector lies in K.

Quasimonotonicity also allows us to compare solutions of two ordinary differential equations.

Lemma 2 (Comparison Principle5) Let f, g : Ω → Rn be Lipschitz continuous and assume that there exist global

solutions x(·, x1, f), x(·, x2, g) : R+ → Rn. Assume that either f or g is quasimonotone and that f(x) ≥ g(x) for

every x ∈ K. Then

x1 ≥ x2 ⇒ x(t, x1, f) ≥ x(t, x2, g) ∀t ≥ 0.

The definition of monotone systems can be naturally extended to controlled systems [50]. Assume that proper cones

Kx ⊂ Rn,Ku ⊂ Rm are given, which endows Rn and Rm with partial orderings. Suppose that a function f :

Ω× Rm → Rn and the control input u : R+ → Rm satisfy appropriate conditions so that there exists a unique global

solution x(·, x0, u, f) : R+ → Rn to the differential equation

ẋ(t) = f(x(t), u(t)), x(0) = x0. (3.4)

4A square matrix A is said to be cross-positive on K if ξ ∈ K, η ∈ K∗, 〈η, ξ〉 = 0⇒ 〈η,Aξ〉 ≥ 0
5More general form can be found in [49], Theorem 4.1. See also [57], Theorem 2.3 for the case of K = R

n
+.
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Then, a dynamical system (3.4) is said to be monotone (with respect to Kx and Ku) if

x1 ≥ x2 and u1(t) ≥ u2(t) ∀t ≥ 0⇒ x(t, x1, u1, f) ≥ x(t, x2, u2, f)∀t ≥ 0. (3.5)

3.4 Properties of Cone-preserving Transfer Functions

The purpose of this section is to show the DC-dominant property of cone-preserving transfer functions (Theorem 3).

This result will be used to prove the small gain theorem for cone-preserving systems in Section 3.5. We start with the

following simple observation.

Lemma 3 HK∞ is complete.

Proof: We prove thatHK∞ is closed inH∞ whenK ⊂ Rn is closed. Then the completeness ofHK∞ follows sinceH∞

is complete and a closed subset of a complete metric space is complete. We prove this by showingH∞ \HK∞ is open.

Suppose Q0 ∈ H∞ \HK∞. Then there exists u0 ∈ LK2 [0,∞), ‖u0‖ = 1 such that v0 = Q0u0 ∈ L2[0,∞)\LK2 [0,∞).

This implies that there exists a set I0 ⊂ [0,∞) with positive Lebesgue measure such that d(t) > 0 ∀t ∈ I0, where

d(t) is the distance between v0(t) and K defined by

d(t) = inf{‖p− v0(t)‖ : p ∈ K}.

Hence
√∫

I0
d(t)2dt = ε > 0. If Q ∈ HK∞, then v = Qu0 ∈ LK2 [0,∞) and

‖Q−Q0‖ = sup
u∈L2,‖u‖=1

‖(Q−Q0)u‖

≥ ‖(Q−Q0)u0‖

= ‖v − v0‖

=

√∫
[0,∞)

‖v − v0‖2dt

≥

√∫
I0

‖v − v0‖2dt

≥

√∫
I0

d(t)2dt = ε.

The last inequality follows because v(t) ∈ K and

‖v(t)− v0(t)‖ ≥ d(t) ∀t ∈ I0.
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This implies that if ‖Q−Q0‖ < ε, then Q ∈ H∞ \ HK∞. ThusH∞ \ HK∞ is open.

Next, we show that if G ∈ H∞, then the supremum of ρ(Ĝ(s)) over C̄+ can be attained only by an s on the imaginary

axis. Although this fact has an explicit connection to the generalized Nyquist criterion and the spectral radius stability

criterion (Theorem 4.7 & 4.9 in [58]), we provide a proof below for the sake of completeness.

Lemma 4 Let G ∈ H∞ and r := sups∈C̄+
ρ(Ĝ(s)). Then there does not exist s ∈ C+ such that r = ρ(Ĝ(s)).

Proof: Suppose there exists s∗ ∈ C+ such that r = ρ(Ĝ(s∗)). Then, by definition of the spectral radius, there exists

λ ∈ C such that |λ| = r and det(λI − Ĝ(s∗)) = 0. Hence s = s∗ is a zero of an analytic function

f(s) = det(I − 1

λ
Ĝ(s))

defined on C̄+. Since f(s) is analytic and non-constant, it has distinct zeros ([59], p.79). Now, let us consider the

Nyquist contour depicted in Figure 3.1 and parametrized by γ and its image parametrized by f ◦ γ. If n(σ, p) denotes

the winding number of the curve σ around p, by the argument principle ([59], p.123),

n(f ◦ γ, 0) =
1

2πj

∫
f◦γ

dz

z
=

1

2πj

∫
γ

f ′(s)

f(s)
ds =

m∑
i=1

n(γ, si)

where s1, · · · , sm are zeros of f(s) counted with multiplicity. Since s∗ is a zero of f(s), s∗ ∈ {s1, · · · , sm}.

Moreover, n(γ, s∗) = 1 and n(γ, si) is either 0 or 1 for each si. Hence n(f ◦ γ, 0) ≥ 1, which implies that the curve

f ◦ γ encircles the origin at least once. For t ∈ [0, 1], consider the following 1-parameter family of maps, obtained

from homotopy from f :

σt = det(I − t

λ
Ĝ ◦ γ).

Notice that σ1 = f ◦ γ and σ0 ≡ 1. Since n(σ1, 0) ≥ 1 and n(σ0, 0) = 0, there exists t ∈ (0, 1) such that 0 ∈ σt.

This implies that

det(I − t

λ
Ĝ(s)) = 0

for some s ∈ γ ⊂ C̄+ and t ∈ (0, 1). This further implies that det(λt I − Ĝ(s)) = 0 for some s ∈ C̄+, meaning that

λ

t
∈ spec(Ĝ(s)).

Therefore, the supremum of ρ(Ĝ(s)) over C̄+ is at least |λ/t| > |λ| = r. However, this contradicts the definition of r.
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𝑅𝑒 

𝐼𝑚 

𝑠∗ 

Figure 3.1: The Nyquist contour includes the imaginary axis and an infinite semi-circle into the right half plane, and
the path γ goes anti-clockwise around the Nyquist contour. When f(s) has zeros on the imaginary axis, γ avoids them
by making infinitesimal semi-circles around them into the right half plane.

The next Lemma shows that the spectral radius ρ(Ĝ(jω)) attains its maximum at ω = 0 when G is cone preserving.

Lemma 5 Let K ⊆ Rn be a proper cone. If G ∈ HK∞, then ρ(Ĝ(jω)) ≤ ρ(Ĝ(0)) ∀ω ∈ R.

Proof: Suppose on the contrary that ρ(Ĝ(jω0)) > ρ(Ĝ(0)) for some nonzero ω0. Our strategy of proof is to construct

a signal u ∈ LK2e[0,∞) containing two frequency components at ω = 0 and ω = ω0 such that w = GNu 6∈ LK2e[0,∞)

for some positive integer N .

Let λω0 be the eigenvalue of Ĝ(jω0) such that |λω0 | = ρ(Ĝ(iω0)) and ξ be the corresponding eigenvector, i.e.,

Ĝ(jω0)ξ = λω0ξ, ‖ξ‖ = 1 (3.6)

Construct v ∈ L2e[0,∞) by

v(t) =


|ξ1| sin(ω0t+ α1)

...

|ξn| sin(ω0t+ αn)

 , αi = ∠ξi.

and let V = {x ∈ Rn : ∃t ≥ 0 s.t. v(t) = x} be its trajectory.

Since K has non-empty interior, the set

D = {(c, p) ∈ (R,K) : ‖p‖ = 1, cp+ V ⊆ K}
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𝑝∗ 
𝑐∗𝑝∗ 

𝑐∗𝑝∗ + 𝑉 

𝐾 

1 

𝑐∗ 
0 

𝐿 

Figure 3.2: If a unit vector p ∈ K and a constant c are such that the scaled vector cp belongs to the shaded area, then
(c, p) ∈ D. The figure also shows a graphical interpretation of c∗ and p∗.

is nonempty 6. Also, it is easy to show that D is closed in the standard topology of R× Rn. Using a sufficiently large

L, define

(c∗, p∗) = arg min
(c,p)∈(R,K)

c

s.t. (c, p) ∈ D

0 ≤ c ≤ L.

Notice that the above “min” is attained since the constraint domain is compact. Moreover, 0 < c∗ < ∞ since

(0, p) 6∈ D for any p ∈ K 7.

Since ρ(Ĝ(jω0)) > ρ(Ĝ(0)), by Gelfand’s formula, there exists N ∈ N such that

‖Ĝ(0)N‖ < ρ(Ĝ(jω0))N .

Using p∗ defined above, define

r = Ĝ(0)Np∗ ∈ K.

Notice that

‖r‖ ≤ ‖Ĝ(0)N‖‖p∗‖ < ρ(Ĝ(jω0))N . (3.7)

6Pick p ∈ int(K) with ‖p‖ = 1 and B(p, ε) ⊆ K. Then for all c ≥ 1/ε, (c, p) ∈ D since V ⊆ B(0, 1).
7Since K is pointed, V 6⊆ K.
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Now consider a periodic signal u defined by

u(t) = c∗p∗ + v(t), t ≥ 0.

and w := GNu. By definition of (c∗, p∗), u ∈ LK2e[0,∞). Since GN is a stable transfer function, the initial transient

behavior diminishes as t → ∞. From (3.6), w(t) approaches a periodic signal ω̃(t) in that ‖w(t) − w̃(t)‖ → 0 as

t→∞, where

w̃(t) = c∗r + |λω0
|Nv(t− τ)

= |λω0
|N (c̄p̄+ v(t− τ)) (3.8)

where c̄ = c∗‖r‖/|λω0
|N , p̄ = r/‖r‖, and τ denotes a phase shift given by τω0 = ∠λω0

. In the above expression,

p̄ ∈ K and ‖p̄‖ = 1. Moreover, from (3.7), its coefficient satisfies

c̄ =
c∗‖r‖
|λω|N

=
c∗‖r‖

ρ(Ĝ(jω0))N
< c∗.

Therefore, by definition of c∗, c̄p̄+ V 6⊆ K. Since v(t− τ) follows the trajectory V , (3.8) means that w̃(t0) 6∈ K for

some t0 ≥ 0. Let d = min{‖w̃(t0)− p‖ : p ∈ K} > 0 be the distance between w̃(t0) and K. Since w̃(t) is periodic,

w̃(tk) 6∈ K and min{‖w̃(tk)− p‖ : p ∈ K} = d for all tk = t0 + 2πk/ω, k ∈ N.

Since ‖w(tk)− w̃(tk)‖ → 0 as k →∞, there exists tk ≥ 0 such that ‖w(tk)− w̃(tk)‖ < d, meaning that w(tk) 6∈ K.

By continuity of w(t) and closedness of K, w(t) 6∈ K on t ∈ [tk− ε, tk + ε]. Hence we conclude that w 6∈ LK2e[0,∞).

Thus we have constructed u ∈ LK2e[0,∞), GN ∈ HK∞, w = GNu 6∈ LK2e[0,∞), which is a contradiction.

Theorem 3 (DC-Dominant Property) Suppose K is a proper cone and G ∈ HK∞. Then

ρ(G) = sup
s∈C̄+

ρ(Ĝ(s)) = ρ(Ĝ(0)).
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Proof: Noticing (3.1),

ρ(G) = max {|λ| : λ ∈ spec(G)}

= max

|λ| : λ ∈ ⋃
s∈C̄+

spec(Ĝ(s))


= sup
s∈C̄+

max
{
|λ| : λ ∈ spec(Ĝ(s))

}
= sup
s∈C̄+

ρ(Ĝ(s))

= ρ(Ĝ(0)).

The last equality follows from Lemma 4 and Lemma 5.

3.5 Feedback Interconnection of Cone-preserving Transfer Functions

Stability of a dynamical system is often studied by considering the feedback interconnection of transfer functions. The

central tool in this approach is the small gain theorem. In this section, we introduce a refined version of the small gain

theorem specialized to feedback interconnections of cone-preserving transfer functions which uses the DC-dominant

property uncovered in Section 3.4. The theorem below is “more informative” than the usual small gain theorem due

to the following peculiar aspects:

• If G is cone-preserving, the stability of the positive feedback system in Figure 3.3 is guaranteed solely by a

DC-gain condition ρ(Ĝ(0)) < 1. This is in clear contrast with the case of general linear systems for which

ρ(Ĝ(jω)) < 1 ∀ω is required for the stability (Theorem 4.9 in [58]).

• For G ∈ H∞, ρ(G) < 1 is only a sufficient condition for invertibility of I −G inH∞. For example, Figure 3.3

with G(s) = −k/(s + ε) is stable for arbitrarily large k > 0 since the phase of a transfer function k/(s + ε)

never reaches −180◦. In contrast, if G ∈ HK∞, the condition ρ(G) < 1 is in fact necessary and sufficient for

invertibility of I −G inHK∞.

• IfG is cone-preserving and its spectral radius is less than one, then (I−G)−1 is again a cone-preserving transfer

function. In particular, this implies that r 7→ y in Figure 3.3 is again a cone-preserving map. Namely, a positive

feedback loop does not destroy the cone-preserving property.

Theorem 4 (Small Gain Theorem for cone preserving systems) Let K ⊂ Rn be a proper cone and G ∈ HK∞. Then

the following statements hold.
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(I) If ρ(Ĝ(0)) < 1, then (I −G) is invertible inHK∞, and (I −G)−1 =
∑∞
k=0G

k.

(II) If ρ(Ĝ(0)) = 1, then (I −G) is not invertible inH∞.

(III) If ρ(Ĝ(0)) > 1, then (I −G) may or may not be invertible inH∞, but is not invertible inHK∞.

Proof: (I) Define a sequence {Tk} in HK∞ by Tk =
∑k
i=0G

i. Since ‖Gk‖1/k → ρ(G) and ρ(G) < 1, there exist

0 < δ < 1 and N ∈ N such that ‖Gk‖1/k < δ ∀k > N. For N < n < m,

‖Tm − Tn‖ = ‖
m∑

l=n+1

Gl‖ ≤
m∑

l=n+1

‖Gl‖ ≤
m∑

l=n+1

δl ≤ δn+1

1− δ
→ 0 as n→∞.

Hence {Tk} is a Cauchy sequence. SinceHK∞ is complete (Lemma 3), T∞ := limk→∞ Tk exists inHK∞. Moreover,

lim
k→∞

‖Tk(I −G)− I‖ = lim
k→∞

‖(I −G)Tk − I‖ = 0.

which means that T∞(I −G) = (I −G)T∞ = I . Thus (I −G)−1 =
∑∞
k=0G

k ∈ HK∞ exists.

(II) By Theorem 3, ρ(Ĝ(0)) = ρ(G) = 1 and Ĝ(0) is a real square matrix such that Ĝ(0)K ⊆ K. Since Ĝ(0) is a

compact operator on Rn, by the Krein-Rutman theorem, 1 ∈ spec(Ĝ(0)) ⊂ spec(G). By definition of spec(G), I−G

is not invertible inH∞.

(III) It suffices to show that if I − G is invertible in H∞, then it is not K-preserving. By Theorem 3, ρ(Ĝ(0)) =

ρ(G) > 1. The Krein-Rutman theorem implies that there exists a nonzero vector x ∈ K such that Ĝ(0)x = ρ(G)x.

Define a constant signal u(t) ≡ x, whose Laplace transform is û(s) = 1
sx. Suppose (I − Ĝ(s))−1 ∈ H∞ and

v̂(s) = (I − Ĝ(s))−1û(s).

Then limt→∞ v(t) exists, since the only pole of v̂(s) is at s = 0. By the final value theorem,

lim
t→∞

v(t) = lim
s→0

sv̂(s) = lim
s→0

s(I − Ĝ(s))−1 1

s
x

= (I − Ĝ(0))−1x =
1

1− ρ(G)
x ∈ −K.

Thus I −G is not K-preserving.
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𝐺 
𝑟 𝑦 

+ 

Figure 3.3: Positive Feedback Figure 3.4: Interconnected transfer functions

It may be useful to interpret Theorem 4 as a stability theorem for feedback systems. We denote by the block diagram

in Figure 3.4 the set of equations with a feedback relation

v̂(s) = Ĝ1(s)ŵ(s) + ê(s)

ŵ(s) = Ĝ2(s)v̂(s) + f̂(s).

Internal signals v, w ∈ L2e[0,∞) are induced by input signals e, f ∈ L2e[0,∞). Physically, internal signals v, w

satisfying the above relationship are observed in response to the injection of signals e, f when the initial state of G1

and G2, if they have state space models, are zero. We say that the feedback interconnection in Figure 3.4 is well-posed

if the closed loop transfer function Gcl : (e, f) 7→ (v, w)

Gcl : L2e[0,∞)× L2e[0,∞)→ L2e[0,∞)× L2e[0,∞)

exists. A well-posed feedback system in Figure 3.4 is said to be stable if Gcl is bounded, i.e.,

Gcl(L2[0,∞)× L2[0,∞)) ⊆ L2[0,∞)× L2[0,∞).

Furthermore, a well-posed feedback system is said to be K-preserving if it satisfies

Gcl(LK2e[0,∞)× LK2e[0,∞)) ⊆ LK2e[0,∞)× LK2e[0,∞).

If G1 and G2 are cone-preserving transfer functions, Theorem 4 says that the feedback system in Figure 3.4 is stable

andK-preserving if and only if ρ(G1G2) = ρ(Ĝ1(0)Ĝ2(0)) < 1. Sufficiency can be verified, sinceGcl has an explicit

form:  v̂(s)

ŵ(s)

 =

 (I − Ĝ1(s)Ĝ2(s))−1 (I − Ĝ1(s)Ĝ2(s))−1Ĝ1(s)

Ĝ2(s)(I − Ĝ1(s)Ĝ2(s))−1 Ĝ2(s)(I − Ĝ1(s)Ĝ2(s))−1Ĝ1(s) + I


 ê(s)

f̂(s)

 .
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in which (I−Ĝ1Ĝ2)−1 ∈ HK∞. Necessity also holds by Theorem 4 (II) and (III), since if ρ(G1G2) = ρ(Ĝ1(0)Ĝ2(0)) ≥

1, the transfer function (I − Ĝ1Ĝ2)−1, if exists, cannot be in HK∞. As an example, consider R+-preserving transfer

functions Ĝ1 = 1
s+1 and Ĝ(s) = 1, in which case ρ(G1G2) = 1. If e = 0, then v̇ = f . Hence the map f 7→ v is a pure

integrator, and is not bounded onL2e[0,∞). Therefore, the interconnection is not stable. For another example, suppose

G1 = 2 andG2 = 1, and ρ(G1G2) = 2. In this case, (I−Ĝ1Ĝ2)−1 = −1 belongs toH∞. However, the interconnec-

tion is not R+-preserving, since positive signals (e, f) = (1, 1) ∈ Rn+ × Rn+ induce (v, w) = (−3,−2) 6∈ Rn+ × Rn+.

3.6 Examples of Cone-Preserving Systems

3.6.1 Positive systems

Consider a transfer function

Ĝ(s) =
s+ 2

s3 + 4s2 + 4s+ 1
.

This system is externally positive, that is, G ∈ HK∞ where K = R+, because it has an internally positive realization

ẋ =


−1 1 1

0 −2 1

0 1 −1

x+


0

0

1

u; y =

[
2
3 0 0

]
x.

Let us consider the spectrum of G. Noticing (3.1), it turns out that spec(G) is the region surrounded by the Nyquist

plot of Ĝ(jω). Figure 3.5 gives a graphical interpretation of the DC-dominant property ofG. As Lemma 5 implies, we

observe that ρ(Ĝ(jω)) attains its maximum at ω = 0, and as Theorem 3 implies, ρ(G) = 2 coincides with ρ(Ĝ(0)).

3.6.2 Systems preserving semidefinite cones

Consider a matrix differential equation

d

dt
X(t) = AX(t) +X(t)AT +BU(t)BT , X(0) = 0. (3.9)

The above system defines a semidefinite-cone-preserving operator. To see this more precisely, let us introduce a vector

representation of a square matrix X

vec(X) :=

[
X11 · · · Xn1 X12 · · · Xn2 · · · X1n · · · Xnn

]T
∈ Rn

2

.
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Figure 3.5: Nyquist plot of Ĝ(s)

If X is a symmetric matrix (i.e., Xij = Xji), then vec(X) has redundant components. To remove redundancy, let us

also introduce

vec(X) :=

[
X11

√
2X21 · · ·

√
2Xn1 X22

√
2X32 · · ·

√
2Xn2 · · · Xnn

]T
∈ R 1

2n(n+1).

There exists a matrix F of size n2 × 1
2n(n + 1) such that vec(X) = Fvec(X) for every symmetric matrix X and

FTF = I . Using these notations, (3.9) can be written in a vector form as

d

dt
vec(X) = (A⊗ I + I ⊗A)vec(X) + (B ⊗B)vec(U), X(0) = 0.

where ⊗ denotes the Kronecker product. Multiplying the above equation by FT from the left, and writing

x(t) = vec(X(t)), u(t) = vec(U(t))

we have

ẋ(t) = A0x(t) +B0u(t), x(0) = 0 (3.10)
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where

A0 = FT (A⊗ I + I ⊗A)F, B0 = FT (B ⊗B)F. (3.11)

By writing (3.9) in the form of (3.10), it is apparent that it is a 1
2n(n+ 1) dimensional linear system. The solution of

(3.9) is given by

X(t) =

∫ t

0

eA(t−s)BU(s)BT eA
T (t−s)ds,

which implies that X(t) is positive semidefinite for t ≥ 0 if U(t) is positive semidefinite for t ≥ 0. As a result, (3.10)

defines a cone-preserving transfer function

G : LK2e[0,∞)→ LK2e[0,∞), G : u 7→ x

where the proper cone K is defined by

K =
{
x ∈ R 1

2n(n+1) : x = vec(X), X ≥ 0
}
.

3.7 Delay-independent Stability of Cone-Preserving Systems

If A0 ∈ Rn×n is a Metzler matrix (all off-diagonal entries are nonnegative) and B0 ∈ Rn×n is an entry-wise nonneg-

ative matrix, then it is known that the following delay differential equation preserves the positive orthant of Rn×n:

ẋ(t) = A0x(t) +B0x(t− τ) (3.12)

x(t) = x0(t) ∈ K = R
n
+, −τ ≤ t ≤ 0.

It is also known that (3.12) is asymptotically stable if and only if its delay-free case (τ = 0) is asymptotically stable

[60, 61, 62]. This is a significant property of positive systems because for general linear systems, the stability is a

delay-dependent property (see e.g., [63]). In this section, we use the results established so far to prove that the property

of “delay-independent stability” holds not only for positive systems, but also for more general cone-preserving linear

systems.

Theorem 5 Let K ∈ Rn be a proper cone and square matrices A0, B0 ∈ Rn×n are such that the dynamical system

ẋ(t) = A0x(t) +B0u(t), x(0) = x0 (3.13)
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is monotone with respect to Kx = Ku = K. Then the delay differential equation

ẋ(t) = A0x(t) +B0x(t− τ) (3.14)

with the initial condition x(t) = x0(t) ∈ K ∀t ∈ [−τ, 0] is asymptotically stable for any nonnegative delay τ if its

delay-free case (τ = 0) is asymptotically stable and monotone.

Proof: Define

Φ(t) =


eA0tB0 t ≥ 0

0 t < 0

.

Then the solution of (3.14) satisfies

x(t) = z0(t) +

∫ t

τ

Φ(t− s)x(s− τ)ds t ≥ 0 (3.15)

where z0 ∈ LK2 [0,∞) is defined by

z0(t) = eA0tx0(0) +

∫ τ

0

Φ(t− s)x0(s− τ)ds.

Define Gτ ∈ HK∞ by

(Gτu)(t) =

∫ t

τ

Φ(t− s)u(s− τ)ds.

In the Laplace domain representation,

Ĝτ (s) = e−τs(sI −A0)−1B0.

Then (3.15) can be written as x = z0 +Gτx. If ρ(Gτ ) < 1, then by Theorem 4, (I−Gτ )−1 ∈ HK∞. Thus the solution

x satisfies

x = (I −Gτ )−1z0 ∈ LK2 [0,∞)

and the proof is complete.

Hence it is left to show that ρ(Gτ ) < 1. We establish this using the hypothesis that the delay-free case of (3.14) is

asymptotically stable and monotone. One consequence of the monotonicity of (3.13) is that B0x ∈ K ∀x ∈ K, since

otherwise there exists ξ ∈ K such that B0ξ 6∈ K and by choosing u(t) ≡ ξ and x(0) = 0, (3.13) yields a solution
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such that x(t) 6∈ K for t ∈ (0, ε). Consider a differential equation

ẋ(t) = (A0 + κB0)x(t) (3.16)

x(t) = x0 ∈ K

and denote its solution by xκ(t). By the monotonicity of (3.13), x0(t) ≥ 0 for t ≥ 0 (assume u(t) ≡ 0 in (3.13)).

When κ = 1, by the hypothesis, the system is asymptotically stable and hence x1(t) → 0 as t → ∞. Notice that the

right hand side of (3.16) is ordered by κ, that is,

0 ≤ κ ≤ 1⇒ A0x ≤ (A0 + κB0)x ≤ (A0 +B0)x ∀x ∈ K.

Hence, by Lemma 2, we have that 0 ≤ x0(t) ≤ xκ(t) ≤ x1(t) for all t ≥ 0. Since the solution xκ(t) is “sandwiched”

by zero and x1(t), and x1(t)→ 0, we conclude the system (3.16) is monotone and asymptotically stable for κ ∈ [0, 1]

and for any initial state in K. Since (3.16) is monotone, the matrix A0 + κB0 is cross-positive on K. If A0 + κB0 is

not Hurwitz, i.e., µ(A0 + κB0) ≥ 0, then by Lemma 1, there exists an initial state x0 ∈ K with which the solution of

(3.16) does not decay, which is a contradiction. Hence A0 + κB0 must be Hurwitz for κ ∈ [0, 1]. Hence

det(sI −A0 − κB0) 6= 0 ∀s ∈ C̄+ ∀κ ∈ [0, 1].

This implies that

det(λI −G0(s)) = det
(
λI − (sI −A0)−1B0

)
= detλ(sI −A0)−1(sI −A0 −

1

λ
B0)

6= 0 ∀s ∈ C̄+ ∀λ ≥ 1.

Hence ρ(G0) < 1.

Finally, since Gτ is K-preserving, and noticing that Ĝτ (0) = Ĝ0(0) ∀τ ≥ 0,

ρ(Gτ ) = ρ(Ĝτ (0)) = ρ(Ĝ0(0)) = ρ(G0) < 1.
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3.8 Delay-Independent Mean-Square Stability of Geometric Brownian Motion

We next use Theorem 5 of Section 3.7 to prove the delay independence of mean-square stability of geometric Brownian

motions. This extends the result of [64] which establishes this property for one dimensional geometric Brownian

motions.

Let w(t) be the 1-dimensional standard Brownian motion starting at zero at t = 0. For square matrices A,B ∈ Rn×n,

consider an n-dimensional geometric Brownian motion with delay:

dx(t) = Ax(t) +Bx(t− τ)dw(t), t ≥ 0 (3.17)

with the initial condition given by

x(t) = x0(t) ∀t ∈ [−τ, 0].

If Ft is the σ-algebra generated by w(s); s ≤ t, then for a nonnegative delay τ , the function t 7→ x(t − τ) is Ft-

measurable and (3.17) is understood in the sense of Ito integral.

Define X(t) := Ex(t)xT (t), where E means the expectation with respect to the law for the Brownian motion starting

at 0.

Lemma 6 X(t) satisfies
d

dt
X(t) = AX(t) +X(t)AT +BX(t− τ)BT , t ≥ 0 (3.18)

with the initial condition X(t) = x0(t)xT0 (t) ∀t ∈ [−τ, 0].

Proof: Let G(x(t)) = x(t)xT (t), t ≥ 0. By applying Ito formula,

G(x(t)) =G(x0(0)) +

∫ 0

−τ
Bx0(s)xT0 (s)BT ds

+

∫ t

0

(
Ax(s)xT (s) + x(s)xT (s)AT +B(Dτx)(s)(Dτx)T (s)BT

)
ds

+

∫ t

0

(
x(s)(Dτx)T (s)BT +B(Dτx)(s)xT (s)

)
dw(s) (3.19)

where the delay operator Dτ is defined by

(Dτx)(t) =


0 0 ≤ t < τ

x(t− τ) τ ≤ t
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for both vector-valued and matrix-valued function x(·). Notice that (Dτx)(t) is Ft-measurable. By taking the expec-

tation of (3.19),

X(t) =x0(0)xT0 (0) +

∫ 0

−τ
Bx0(s)xT0 (0)BT ds

+

∫ t

0

(
AX(s) +X(s)AT +B(DτX)(s)BT

)
ds. (3.20)

Here, we used the fact that the expectation of the last term of (3.19) is zero (Theorem 3.2.1 in [65]). In differential

form, (3.20) is written as
d

dt
X(t) = AX(t) +X(t)AT +BX(t− τ)BT , t ≥ 0

with the initial condition X(t) = x0(t)xT0 (t) ∀t ∈ [−τ, 0] as desired.

A stochastic process x(t) is said to be mean square stable if limt→∞E‖x(t)‖2 = 0. The next theorem shows that the

property of mean square stability of the geometric Brownian motion defined by (3.17) is delay independent.

Theorem 6 A geometric Brownian motion defined by (3.17) is mean square stable for all τ ≥ 0 if and only if its

delay-free case (τ = 0) is mean square stable.

Proof: Mean square stability of (3.17) is equivalent to limt→∞Ex(t)xT (t) = 0. Thus, by Lemma 6, it is equivalent

to the asymptotic stability of the matrix system

d

dt
X(t) = AX(t) +X(t)AT +BX(t− τ)BT , t ≥ 0

X(t) = x0(t)xT0 (t) ∀t ∈ [−τ, 0].

By employing the vector representation of the same differential equation, it can be seen that the mean square stability

is further equivalent to the asymptotic stability of

ẋ(t) = A0x(t) +B0x(t− τ) (3.21)

x(t) = x0(t) ∈ K ∀t ∈ [−τ, 0].

where A0 and B0 are defined in (3.11). By Theorem 5, the above delay matrix differential equation is asymptotically

stable for any nonnegative delay τ if and only if its delay-free case (τ = 0) is asymptotically stable and monotone.

Since the monotonicity at τ = 0 clearly holds, this implies that the geometric Brownian motion (3.17) is mean square

stable for all nonnegative delay τ if and only if its delay-free case (τ = 0) is mean square stable.
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3.9 Conclusion

In this chapter, a class of square transfer functions is considered that leave a proper cone in L2 signals invariant. We

have shown that transfer functions in this class have the attractive DC-dominance which, to the best of our knowledge,

has not been explicitly investigated in the system & control literature. In short, this can be understood as an interpre-

tation of the celebrated Perron-Frobenius theorem and Krein-Rutman theorem in the context of dynamical systems.

More precisely, we showed the following assertion: If the transfer functions of interest are cone-preserving, the radius

of their operator spectrum is attained by DC input signals and thus, the dynamic stability of their interconnection is

guaranteed solely by the static gain analysis. Using the DC-dominant property, we have observed that the stability

of cone-preserving systems is delay-independent, which was then applied to prove that the mean-square stability of a

certain class of geometric Brownian motion is delay-independent.
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Chapter 4

Positive Systems

In the previous chapter, we considered a class of linear dynamical systems that have the “cone preserving” property.

In particular, we saw that a MIMO transfer function Ĝ(s) that leaves a proper cone K in the space of input-output

signals invariant have the DC-dominant property – the spectral radius ρ(Ĝ(s)) attains its maximum over the closed

right half plane at s = 0. We have also seen that the stability of a cone-preserving dynamical system is independent of

the presence of delays in the right hand side of the differential equation.

In this chapter, we further restrict our attention to the so-called positive systems. Positive systems are special cases of

cone-preserving systems in which the invariant proper coneK is chosen to be the nonnegative orthant of the Euclidean

space. The theory of positive systems has an explicit and deep connection with the theory of non-negative matrices,

which originated from the work of Perron and Frobenius in the years 1907-1909. Positive system theory has been

repeatedly revisited by many researchers from various disciplines. Extensive results on non-negative matrices and

related dynamical system theory can be found in textbooks devoted to this topic [66, 67, 68, 53, 46, 69, 70, 71].

Many standard textbooks on linear algebra and matrix theory including [72] have a section on non-negative matrices.

The theory of positive linear systems has found various applications in physical, social and computational problems.

For example, it serves as a plausible model for many real world dynamical systems ranging from traffic flow [73],

system biology [50], PageRank and other algorithms involving Markov chains [69], queuing systems, economical and

ecological systems [70].

Since positive systems are cone-preserving systems, all properties we have derived in the previous section remain valid.

However, the purpose of this chapter is to derive additional stronger and attractive properties of positive systems. The

main contribution of this chapter is the consideration of the control synthesis for positive systems. As compared to the

analysis aspect, control aspect of positive systems seems to be less studied. It turns out that a certain type of distributed

control can be easily designed for positive systems. In particular, we make the following contributions:
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• We show that positive systems have a stronger DC-dominant property than the general cone-preserving systems

do. As proved in [74] for discrete time case and in [52] for SISO case, some matrix norms ‖Ĝ(jω)‖p with

p = 1, 2,∞ attain their maximum at zero frequency ω = 0. Notice that this is a stronger property than the DC-

dominance in term of the spectral radius, since the DC-dominance in spectral radius can be deduced from the

DC-dominance in norms by a simple application of Gelfand’s formula. We revisit the fact that ‖Ĝ(jω)‖p with

p = 1, 2,∞ attains its maximum at ω = 0 for MIMO positive transfer functions, and show that this property

does not necessarily hold for more general cone-preserving systems by presenting a counterexample.

• The KYP lemma for positive systems is derived. As we saw in Chapter 2, the KYP lemma plays a central role

in the well-posedness analysis. In the case of positive systems, we will show that the KYP lemma can be greatly

simplified. Most notably, we can assume a diagonal storage function without introducing conservatism in some

important classes of dissipativity analysis including the bounded realness. In a sense, this can be viewed as

a natural extension of a well-known diagonal stability property of the positive autonomous systems ẋ = Ax,

which claims that the A is Hurwitz stable if and only if there exists a diagonal P > 0 satisfying the Lyapunov

inequality ATP + PA < 0.

• We point out that the above observations are very useful in the control designs for positive systems. Namely,

the optimal structured control synthesis [47] and the bounded control synthesis [75] in the H∞ sense can be

formulated as an LP or SDP. This is a significant fact given that structured or bounded control problems are

long-standing problems in linear control theory.

The reason why these strong consequences hold for positive systems but not for general cone-preserving systems is, at

least in a high level discussion, that the positivity is a coordinate dependent notion, while the cone-preserving property

could be with respect to any cones. This seems to make a difference in the availability of a diagonal Lyapunov function

and a structured control synthesis, since both “diagonal” and “structured” are coordinate dependent notion.

In what follows, the inequality signs < and ≤ between elements in Rn are understood to be the partial ordering

generated by a proper cone Rn+. That is, x < y ⇔ xi < yi ∀i = 1, · · · , n and x ≤ y ⇔ xi ≤ yi ∀i = 1, · · · , n

respectively.
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4.1 Positive linear systems

A linear autonomous system ẋ(t) = Ax(t), x(0) = x0 is said to be positive if x0 ≥ 0 implies x(t) ≥ 0 ∀t ≥ 0. The

definition is naturally extended to the system with input and output. A linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (4.1a)

y(t) = Cx(t) +Du(t) (4.1b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m is said to be internally positive if x0 ≥ 0, u(t) ≥ 0 ∀t ≥ 0

implies x(t) ≥ 0, y(t) ≥ 0 ∀t ≥ 0. Notice that these definitions are nothing but the monotonicity condition (3.3) (3.5)

with K = Rn+. From Section 3.3 (also from [50, 49]), the positivity and the internal positivity can be expressed in the

quasimonotone condition with respect to K = Rn+. It turns out that a linear autonomous system is positive if and only

if A is a Metzler matrix (all off-diagonal entries are non-negative), and (4.1) is internally positive if and only if A is

Metzler and B,C,D are entry-wise non-negative matrices.

The linear system (4.1) is said to be externally positive if x0 = 0, u(t) ≥ 0 ∀t ≥ 0 implies y(t) ≥ 0 ∀t ≥ 0. Since

this is purely an input-output property, one can equivalently say that a system is externally positive if and only if its

impulse response is non-negative. One theoretical challenge here is that it is NP-hard to ensure the non-negativity of

the impulse response of a given rational transfer function (this is known as the Skolem-Pisot problem [76], see also

[52]). Even if it is known that the transfer function is externally positive, there may or may not exist an internally

positive realization1. However, we will not go into this direction in this thesis.

4.2 System norms

We start by looking at how the system norms of positive systems can be computed. Due to the DC-dominance property,

drastically simpler formulas are available for positive systems than for general linear systems. We will particularly

develop the L1, L2, and L∞ induced norm characterizations of positive systems. Our notations are standard. Vector

norms on Cn are defined by

‖x‖p = (

n∑
i=1

|xi|p)1/p for 1 ≤ p <∞, ‖x‖∞ = max
i
|xi|.

1A problem of finding an internally positive realization of a given externally positive transfer function is known as a positive realization problem.
An example of externally positive transfer function is known for which there is no internally positive realization no matter how large the state space
dimension is allowed to take [70].
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Induced norms on matrices in Cn×m are defined by

‖M‖1→1 = max
j

∑
i

|mij |

‖M‖∞→∞ = max
i

∑
j

|mij |

‖M‖2→2 = λmax(M∗M)1/2

where λmax is the maximum eigenvalue. ‖M‖2→2 is the maximum singular value of M and we write ‖M‖2→2 =

‖M‖ for short, to be consistent with the notations of previous chapters. Norms on Lebesgue integrable functions

f : R+ → Rn are defined as

‖f‖Lp = (

∫ ∞
0

‖f(t)‖ppdt)1/p for 1 ≤ p <∞, ‖f‖L∞ = ess sup
t≥0
‖f(t)‖∞

If G : Lp → Lp, the induced norms of G is given by

‖G‖Lp→Lp
= sup
‖u‖Lp 6=0

‖Gu‖Lp

‖u‖Lp

.

In particular, the L2-induced norm is also known as the H∞ norm, and ‖G‖L2→L2 will be alternatively written as

‖G‖∞. Suppose that G : Lp → Lp, G : w 7→ z is defined by a linear time invariant system (4.1), or Ĝ(s) in the

transfer function form on the Laplace domain. Then we have that [12]

‖G‖L1→L1 = max
j

∑
i

∫ ∞
0

|hij(t)|dt

‖G‖L∞→L∞ = max
i

∑
j

∫ ∞
0

|hij(t)|dt

‖G‖∞ = max
ω∈R
‖Ĝ(jω)‖2→2

where hij(t) is the impulse response from the j-th input to the i-th output. The above formulas hold true for all linear

transfer functions. However, if G is externally positive, we have the following additional formulas:

Theorem 7 ([74, 51, 52]) If G is an externally positive system. Then its L1, L2, and L∞ induced norm can be written
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using matrix norms of its static gain Ĝ(0) as follows:

‖G‖L1→L1 = max
j

∑
i

∫ ∞
0

hij(t)dt = ‖Ĝ(0)‖1→1

‖G‖L∞→L∞ = max
i

∑
j

∫ ∞
0

hij(t)dt = ‖Ĝ(0)‖∞→∞

‖G‖∞ = ‖Ĝ(0)‖

Proof: The following proof of L1 and L∞ norm conditions are borrowed from [74]. Since impulse responses are

nonnegative signals, |hij(t)| = hij(t). However, notice that

∫ ∞
0

hij(t)dt =

∫ ∞
0

hij(t)e
−stdt|s=0 = Ĝij(0).

which is a non-negative quantity for every (i, j). Hence

‖G‖L1→L1
= max

j

∑
i

Ĝij(0) = ‖Ĝ(0)‖1→1, ‖G‖L∞→L∞ = max
i

∑
j

Ĝij(0) = ‖Ĝ(0)‖∞→∞.

The H∞ norm characterization was reported in [51, 52] (results are presented in discrete-time domain and the SISO

case respectively). We employ an alternative approach here. To complete the proof, it is sufficient to prove that

‖Ĝ(0)‖ ≥ ‖Ĝ(jω)‖ for all ω ∈ R. Without loss of generality, suppose ‖Ĝ(jω)‖ > ‖Ĝ(0)‖ = 1 for some ω 6= 0.

Then there exist a set of non-zero complex vectors ŵ, v̂ such that ŵ = Ĝ(jω)v̂ and ‖ŵ‖ > ‖v̂‖. Namely, in the steady

state, the output signal w(t) is induced when the input signal v(t) is applied to the system, where

v(t) =


|v̂1| sin(ωt+ α1)

...

|v̂n| sin(ωt+ αn)

 , αi = ∠v̂i and w(t) =


|ŵ1| sin(ωt+ β1)

...

|ŵn| sin(ωt+ βn)

 , βi = ∠ŵi

and
n∑
i=1

|ŵi|2 >
n∑
i=1

|v̂i|2. (4.2)

Define the non-negative vector v0 = [|v̂1| · · · |v̂n|]T . Then u(t) = v0 + v(t) is a non-negative signal. If the input

u(t) is applied to the system, the output y(t) can be written as y(t) = w0 + w(t), where w0 is given by w0 = Ĝ(0)v0

and w(t) is given above. By the positivity of G, y(t) is a non-negative signal. Hence (w0)i ≥ |ŵi| for each entry.
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Figure 4.1: The input, state, and output cones

Combined with (4.2), we have

‖w0‖2 ≥
n∑
i=1

|ŵi|2 >
n∑
i=1

|v̂i|2 = ‖v0‖2.

However, since w0 = Ĝ(0)v0 this contradicts ‖Ĝ(0)‖ = 1.

In Theorem 3 in Section 3.4, we have derived the DC-dominance property of a cone-preserving transfer function in

terms of the spectral radius. This states that

sup
ω∈R

ρ(Ĝ(jω)) = ρ(Ĝ(0)) (4.3)

holds for a cone-preserving transfer function Ĝ(s). Since positive systems are cone-preserving, this result certainly

applies to positive systems as well. On the other hand, Theorem 7 claims the DC-dominance in terms of matrix norms.

Notice that the DC-dominance in matrix norms is even stronger than the DC-dominance (4.3) in the spectral radius,

since by an application of the Gelfand’s formula, (4.3) can be deduced from

sup
ω∈R
‖Ĝ(jω)‖ = ‖Ĝ(0)‖. (4.4)

Hence, a natural question is whether (4.4) is also true for general cone preserving transfer functions. The next coun-

terexample shows that this is not the case. Consider the following three proper cones in R2, as shown in Figure 4.1,

defined by

L = {x ∈ R2 : Lx ≥ 0},M = {u ∈ R2 : Mu ≥ 0},N = {y ∈ R2 : Ny ≥ 0}

where

L =

 −0.740 0.253

0.191 0.675

 , M = N =

 0.233 −1.315

−0.101 −1.558


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Figure 4.2: Matrix 2-norm and spectral radius of Ĝ(jω) when G is cone-preserving but not externally positive.

and a transfer function Ĝ(s) = C(sI −A)−1B +D where

A =

 −0.884 0.177

0.064 −0.316

 , B =

 0.191 −1.226

−0.119 2.285

 , C =

 2.215 −0.0728

−0.143 0.281

 , D = 0.

Since LAL−1 is Metzler and LBM−1, NCL−1, NDM−1 are entry-wise non-negative, the transfer function defines

a (L,M,N )-cone fractional system, using the terminology of [77]. This means that as long as x(0) ∈ L and u(t) ∈

M ∀t ≥ 0, then x(t) ∈ L ∀t ≥ 0 and y(t) ∈ N ∀t ≥ 0. Since M = N , the transfer function is cone-preserving.

The frequency dependent gain ‖Ĝ(jω)‖ is plotted in Figure 4.2. Notice that ‖Ĝ(0)‖ ≈ 2.07, while ‖Ĝ(jω0)‖ ≈ 2.71

at ω0 ≈ 0.41. Hence ‖Ĝ(jω)‖ does not attain its maximum at ω = 0. However, the spectral radii are computed as

ρ(Ĝ(0)) ≈ 2.05, ρ(Ĝ(jω0)) ≈ 1.37. Hence, as plotted in Figure 4.2, the DC-dominance property still holds in term

of the spectral radius. This verifies the result of Theorem 3.

4.3 Computing system norms

Theorem 7 suggests that the L1 and L∞ norms of positive systems are obtained simply by computing the matrix 1-

and ∞-norms of the DC gain matrix Ĝ(0). In this section, we consider a linear programming approach to compute

them. The primary purpose of doing this is for the later use in control synthesis.
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Lemma 7 Suppose G is internally positive and A is Hurwitz. Then ‖G‖L∞→L∞ ≤ γ if and only if the LP :

λ ∈ Rn, λ ≥ 0

Aλ+B1m ≤ 0

Cλ+D1m ≤ γ1p

is feasible, where inequalities are entry-wise.

Proof: Suppose ‖G‖L∞→L∞ ≤ γ. By Theorem 7, ‖D − CA−1B‖∞→∞ ≤ γ. Since A is Hurwitz and Metzler, by

the inverse positivity property (e.g., [53], p.137), −A−1 is entry-wise non-negative. Since D −CA−1B is entry-wise

non-negative, by definition of the matrix infinity norm, this is equivalent to (D − CA−1B)1m ≤ γ1p. By setting

λ = −A−1B1m ≥ 0, we have Aλ + B1m = 0 and Cλ + D1m ≤ γ1p. Thus, the LP is feasible. Converse is also

immediate.

Lemma 8 Suppose G is internally positive and A is Hurwitz. Then ‖G‖L1→L1
≤ γ if and only if the LP:

λ ∈ Rn, λ ≥ 0

A∗λ+ C∗1p ≤ 0

B∗λ+D∗1p ≤ γ1m

is feasible, where inequalities are entry-wise.

Proof: Since ‖M‖1→1 = ‖M∗‖∞→∞ for any matrix M , the result follows from Lemma 7.

4.4 KYP Lemma for internally positive systems

By Theorem 7, the H∞ norm of a positive system G is equal to the matrix 2-norm ‖Ĝ(0)‖ of a static gain matrix.

Alternatively, the computation of the H∞ norm can be formulated as an SDP. The following lemma (a slight variant

is presented in [78]) is a key observation.

Lemma 9 Suppose Ml, l = 1, 2, · · · ,m are symmetric and Metzler matrices. If Ψl = {kMl : k ≥ 0}, then

(Ψ1, · · · ,Ψm) are mutually lossless. Moreover, if there exists a nonzero matrix X ≥ 0 such that

trM1X ≥ 0, · · · , trMnX ≥ 0
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then, there exists a nonzero vector ζ ∈ Rm+ such that

ζ∗M1ζ ≥ 0, · · · , ζ∗Mmζ ≥ 0.

Proof: Let xij be the (i, j)-th entry of X , and construct ζ = (
√
x11, · · · ,

√
xmm)T ∈ Rm+ . Then, for each

l = 1, · · · ,m,

ζ∗Mlζ − trMlX =
∑
i,j

(Ml)i,j(
√
xii
√
xjj − xij) ≥ 0.

The inequality follows since (Ml)i,j ≥ 0 for i 6= j and X ≥ 0 implies√xiixjj ≥ xij .

The next result can be viewed as the KYP lemma for internally positive systems.

Theorem 8 Let A ∈ Rn×n be Metzler and Hurwitz, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m be entry-wise non-negative,

and G(s) = C(sI −A)−1B +D. Then the following are equivalent.

(I) There exists a diagonal matrix P > 0 such that

 A B

I 0


∗  0 P

P 0


 A B

I 0

+

 C D

0 I


∗  I 0

0 −γ2I


 C D

0 I

 < 0

(II) ‖G‖∞ < γ.

Proof: By the standard Bounded Real Lemma, the implication (I)⇒(II) clearly holds. To see the converse, define

Ni =

 A∗Ei + EiA EiB

B∗Ei 0

 for i = 1, · · · , n, M =

 C∗C C∗D

D∗C D∗D − γ2I


where Ei is a n×n matrix whose (i, i)-th entry is one and other entries are zero. Notice that (I) means that there exist

positive numbers p1, · · · , pn such that
n∑
i=1

piNi +M < 0.

Suppose now that the SDP (I) is infeasible. Then by the separating hyperplane theorem, there exists a non-zero X ≥ 0

such that

tr(

n∑
i=1

piNi +M)X ≥ 0

64



www.manaraa.com

for all positive numbers p1, · · · , pn. In particular, this means that

trN1X ≥ 0, · · · , trNnX ≥ 0, trMX ≥ 0.

Notice that N1, · · · , Nn,M are Metzler. Hence, by Lemma 9, there exists a nonzero ζ ≥ 0 such that

ζ∗N1ζ ≥ 0, · · · , ζ∗Nnζ ≥ 0, ζ∗Mζ ≥ 0.

Writing ζ =

 x0

u0

, this means that

All diagonal entries of (Ax0 +Bu0)x∗0 are non-negative, and (4.5)

‖Cx0 +Du0‖2 ≥ ‖u0‖2. (4.6)

If u0 = 0, then all diagonal entries of Ax0x
∗
0 are non-negative. By the Barker-Berman-Plemmons result2, it has to be

that x0 = 0 and contradicts ζ 6= 0. This also implies that Cx0 +Du0 6= 0 since otherwise (4.6) means u0 = 0. Define

∆ =
u0(Cx0 +Du0)∗

‖Cx0 +Du0‖2
∈ Rm×p+

then ‖∆‖ ≤ 1. Without loss of generality, we assume ‖D‖ < 1 because otherwise clearly ‖G‖∞ ≥ 1. Then (I−∆D)

is invertible and u0 = (I−∆D)−1∆Cx0. Combined with (4.5), all diagonal entries of (Ax0 +Bu0)x∗0 = Ãx0x
∗
0 are

non-negative where Ã = A+B(I −∆D)−1∆C. Since A is Metzler and B,C,D have non-negative entries, and the

Neumann series (I −∆D)−1 =
∑∞
k=0(∆D)k, which converges, also has non-negative entries, Ã is again a Metzler

matrix. By another application of the Barker-Berman-Plemmons result, the fact that all diagonal entries of Ãx0x
∗
0 are

non-negative implies that Ã cannot be Hurwitz. This means that the positive feedback interconnection of G(s) and ∆

is not internally stable. Since ‖∆‖ < 0, by the small gain theorem, ‖G‖∞ ≥ 1.

Recall that, without an assumption of internal positivity, the standard Bounded Real Lemma states the equivalence of

‖G‖∞ < γ and an LMI condition similar to (I), but it is not allowed to take a diagonal P in general. This means that

(I) is only a sufficient condition for (II) for general systems. Theorem 8 is significant in that the internal positivity

assumption makes (I) a necessary and sufficient condition for (II). Recall also the role of diagonal control-Lyapunov

function in the context of distributed control mentioned in Section 2.7.2. In this context, Theorem 8 suggests that

we can focus only on diagonal control-Lyapunov functions in the control design process and this will not introduce
2A is Metzler and Hurwitz if and only if AX has at least one negative diagonal entry for all non-zero X ≥ 0. This is a direct consequence of

the diagonal stability of A. See [79].
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conservatism, provided that the closed loop system is internally positive. We will consider the structured control

synthesis for positive systems in the next section. For the control design purpose, the equivalent LMI to (I):


A∗P + PA PB C∗

B∗P −γI D∗

C D −γI

 < 0

is often more useful, which can be easily derived from (I) by taking the Schur complements.

A similar technique of proof can be used to derive a lossless µ-analysis condition for internally positive systems. The

following theorem claims that the robust stability of internally positive systems subject to an arbitrary number of scalar

uncertainties in the unit disk can be analyzed via SDP without conservatism.

Theorem 9 (µ-analysis for internally positive systems) Let A ∈ Rn×n be Metzler and Hurwitz, B ∈ Rn×m, C ∈

Rm×n, D ∈ Rm×m be entry-wise non-negative, and G(s) = C(sI −A)−1B +D. Then the following are equivalent.

(I) There exist diagonal matrices P > 0 and Q > 0 such that

 A B

I 0


∗  0 P

P 0


 A B

I 0

+

 C D

0 I


∗  Q 0

0 −Q


 C D

0 I

 < 0

(II) For all ∆ ∈∆, I −∆D is invertible and A+B(I −∆D)−1∆C is Hurwitz, where

∆ = {diag(δ1, · · · , δm) : δi ∈ D̄ ∀i = 1, · · · ,m}.

Notice that condition (II) means that the dynamical system G(s) is robustly stable when interconnected to m complex

scalar LTI uncertainties. It is well known in the context of µ-analysis that the LMI test (I) only corresponds to

computing a convex upper bound of the structured singular value µ using the diagonal scaling technique (e.g., [13]).

For general stable system G(s) = C(sI − A)−1B + D without positivity assumption, the only situations where

losslessness is known to hold is when the relation “2s + f ≤ 3” holds, where s is the number of scalar blocks

and f is the number of full blocks [45]. Theorem 9 is interesting because it claims that the exact µ-analysis can be

performed for internally positive systems with an arbitrary number of scalar uncertainty blocks using LMI. This result

is significant in that it breaks the “2s+f ≤ 3” rule mentioned above since s can be arbitrary. This observation supports

the fact reported in [80] that the structured stability radius of Metzler systems can be explicitly computed.
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Proof: By the standard KYP lemma for the µ-analysis, (I)⇒(II) is clear. We prove the converse by showing its

contrapositive ¬(I)⇒ ¬(II). To this end, notice that µ�(D) < 1 can be assumed without loss of generality, where

µ�(D) is the structured singular value of D defined by

µ�(D) =
1

min{|τ | : det(I − τ∆D) = 0,∆ ∈∆}

This is because otherwise there exists ∆ ∈ ∆ such that I − ∆D is singular, and this immediately leads to ¬(II).

Another implication of µ�(D) < 1 is ρ(∆D) < 1 for all ∆ ∈∆.

Now the converse can be shown using a similar technique as in the proof of Theorem 8. Define

Ni =

 A∗Ei + EiA EiB

B∗Ei 0

 for i = 1, · · · , n, Mj =

 C∗EjC C∗EjD

D∗EjC D∗EjD − Ej

 for j = 1, · · · ,m.

Then (I) means that there exists positive numbers p1, · · · , pn, q1, · · · , qm such that

n∑
i=1

piNi +

m∑
j=1

qiMi < 0.

If (I) is infeasible, by the separating hyperplane theorem, there exists a non-zero X ≥ 0 such that

trN1X ≥ 0, · · · , trNnX ≥ 0, trM1X ≥ 0, · · · , trMmX ≥ 0

Notice that N1, · · · , Nn,M1, · · · ,Mm are Metzler. By Lemma 9, there exists a nonzero ζ ≥ 0 such that

ζ∗N1ζ ≥ 0, · · · , ζ∗Nnζ ≥ 0, ζ∗M1ζ ≥ 0, · · · , ζ∗Mmζ ≥ 0.

Writing ζ =

 ξ

η

, this means that

All diagonal entries of (Aξ +Bη)ξ∗ are non-negative, and (4.7)

(Cξ +Dη)j ≥ ηj ∀j = 1, · · · ,m. (4.8)
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Define ∆ = diag(δ1, · · · , δm) ∈∆ where each 0 ≤ δi ≤ 1 is set to

δj =


ηj/(Cξ +Dη)j if (Cξ +Dη)j 6= 0

0 if (Cξ +Dη)j = 0

so that η = (I −∆D)−1∆Cξ. Note that, since ρ(∆D) < 1, the inverse exists and is entry-wise non-negative because

it can be written as a convergent series

(I −∆D)−1 =

∞∑
k=0

(∆D)k.

Combined with (4.7), all diagonal entries of (Aξ+Bη)ξ∗ = Ãξξ∗ are non-negative where Ã = A+B(I−∆D)−1∆C.

Since Ã is Metzler, by the Barker-Berman-Plemmons result, this fact implies that Ã is not Hurwitz.

4.5 Fixed-structure static state feedback control design

In the previous section, we have characterized systems norms of internally positive systems as LP or SDP. Using this

result, we now derive control syntheses for L∞ and L2 induced gain minimization. Consider a system with control

input

ẋ(t) = Ax(t) +Bu(t) + Ew(t), x(0) = 0

z(t) = Cx(t) +Du(t) + Fw(t).

where A ∈ Rn is a Metzler matrix and E ∈ Rn×m, C ∈ Rp×n, F ∈ Rp×m are entry-wise non-negative matrices. We

want to design a static state feedback control

u(t) = Kx(t)

which optimizes a certain performance criterion while keeping internal positivity of the closed loop system. The latter

requirement can be achieved by ensuring A + BK to be Metzler and C + DK to be entry-wise nonnegative. We

additionally require that K is subject to the structural constraint K due to the information structure in the real world.

For example, if K ∈ R2×2 but u1 is to be determined without observing x2, the optimal controller K needs to be

found among the ones with the structure

K =

 ∗ 0

∗ ∗

 ∈ K.
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4.5.1 L∞-induced gain minimization

Notice that the closed loop system Gcl is given by

ẋ = (A+BK)x+ Ew (4.9a)

y = (C +DK)x+ Fw. (4.9b)

Our goal here is to derive an algorithm to find K ∈ K that minimizes the L∞ induced norm of Gcl, while keeping Gcl

internally positive. By a direct application of Lemma 7, this can be done by solving

min γ

s.t. λ ∈ Rn, λ ≥ 0

(A+BK)λ+ E1m ≤ 0

(C +DK)λ+ F1m ≤ γ1p

A+BK is Metzler

C +DK is entry-wise nonnegative

K ∈ K.

However, notice that bothK and λ are variables in the above program. Since there is a productKλ the above program,

it is not an LP anymore. However, this difficulty can be circumvented by applying the following change of variables:

λ = P1n,KP = Z ∈ K
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where P is a diagonal matrix. Using new variables P and Z, the above program is equivalently written as an LP:

min γ (4.10a)

s.t. P > 0 : diagonal (4.10b)

Z ∈ K (4.10c)

(AP +BZ)1n + E1m < 0 (4.10d)

(CP +DZ)1n + F1m < γ1n (4.10e)

AP +BZ is Metzler (4.10f)

CP +DZ is entry-wise nonnegative (4.10g)

Z ∈ K. (4.10h)

Using a feasible solution P,Z to the above LP, the optimal controller can be reconstructed by K = ZP−1 ∈ K.

Therefore, the minimum L∞-induced gain attained by a structured static state feedback controller K ∈ K is obtained

by solving the LP (4.10). In [75], an LP-based stabilizing controller design method that achieves closed loop positivity

is proposed. The above technique is derived in [74], and can be viewed as a generalization of [75] for the L∞

performance optimization. A related technique is used in [81] for the optimal network routing problem.

If one requires the conservation of the flow quantity, the above LP is also subject to:

n∑
i=1

(AP +BZ)ij = 0 ∀j ∈ {1, · · · , n}.

4.5.2 H∞ norm minimization

The Bounded Real Lemma for internally positive systems (Theorem 8) can be used to design the optimal static state

feedback H∞ control that maintains the closed loop internal positivity. The use of Theorem 8 has a particular advan-

tage over the standard Bounded Real Lemma in the distributed control design. Notably, the fact that a diagonal storage

function can be assumed without loss of generality implies that the structured static state feedback control design

problem can be turned into an LMI problem. This finding, together with the derivation of the “diagonal” Bounded

Real Lemma (Theorem 8) is deemed to be one of the contributions of this thesis.

To see how a structured control problem can be turned into an LMI, consider again the closed loop systemGcl given by

(4.9) in which E and F are entry-wise nonnegative matrices. Suppose that K ∈ K is a structured static state feedback

controller such that the closed loop system Gcl is stable, internally positive, and satisfies ‖Gcl‖∞ < γ. By Theorem
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8, this is equivalent to the existence of a diagonal matrix P > 0 such that


(A+BK)∗P + P (A+BK) PE (C +DK)∗

E∗P −γI F ∗

C +DK F −γI

 < 0. (4.11)

By right- and left-multiplying (4.11) by diag(P−1, I, I) and then performing the change of variables (P−1,KP−1) 7→

(W,Z), we obtain 
AW +WA∗ +BZ + Z∗B∗ E WC∗ + Z∗D∗

E∗ −γI F ∗

CW +DZ F −γI

 < 0. (4.12)

Notice that the diagonality of P plays a crucial role in this step. Namely, we have K ∈ K ⇔ Z ∈ K. Thus we have

the following.

Theorem 10 Let K ∈ K a static state feedback controller such that the closed loop system Gcl is stable, internally

positive. The optimal H∞ performance γ and the corresponding H∞ optimal controller can be found by solving the

following SDP:

min γ (4.13a)

s.t. P > 0 : diagonal (4.13b)
AW +WA∗ +BZ + Z∗B∗ E WC∗ + Z∗D∗

E∗ −γI F ∗

CW +DZ F −γI

 < 0. (4.13c)

AP +BZ is Metzler (4.13d)

CP +DZ is entry-wise nonnegative (4.13e)

Z ∈ K (4.13f)

The optimal controller can be reconstructed by K = ZW−1.

4.5.3 Why is closed loop positivity required?

We have derived the structured control syntheses for the L∞ and L2 gain minimization for positive systems. Notice

that the key requirement that we are making so that the Lemma 7 and Theorem 8 are applicable is the closed loop
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positivity (i.e., requirements that A + BK is Metzler and C + DK is entry-wise non-negative). Indeed, the optimal

structured control synthesis remains very challenging if this restriction is removed. In this section, we consider why

this requirement is natural in practice.

Recall that positive systems typically represent dynamics of non-negative quantities, such as concentration of sub-

stances in chemical processes and absolute temperatures. As pointed out by [75], the non-negative nature of the state

has to be taken into account in the control design phase as well. If the closed loop positivity is not required, it is

possible that the controller tries to drive the state space to the negative region. Since this is infeasible in real systems,

the system model is self-contradicting and does not represent real systems. This will cause unexpected behavior of

the closed loop system and a loss of stability or control performance when the controller is implemented in the real

system.

Even if there is no such physical requirements, one might be still justified to require closed loop positivity given the

computational advantages that follows. This idea is similar to requiring superstability even when only stability is

desired physically, simply to make the control problem more tractable [82].

In other circumstances, requiring closed loop positivity might be beneficial to reduce uncertainties. To see this, con-

sider the following situation: Suppose Figure 4.3 is a general feedback in which signals can take positive or negative

values, but a nonlinear uncertainty ∆ satisfies more strict sector bound condition if injected signal v is restricted to the

nonnegative region as in Figure 4.4. In other words, ∆ is more “certain” on the positive domain. Then one can focus

on the set of controllers (if exists) that artificially makes the closed loop system 4.3 nonnegative, so more strict sector

bound condition on ∆ can be used. To demonstrate this, let ∆1,∆2 be scalar uncertainties satisfying the sector bound

condition of Figure 4.4. Notice that each uncertainty block satisfies an IQC

α2‖v‖2 − ‖∆(v)‖2 ≥ 0 ∀v ∈ R (4.14)

on the entire domain and an IQC

β2‖v‖2 − ‖∆(v)‖2 ≥ 0 ∀v ≥ 0. (4.15)

on the positive domain. Our objective is to design a static state feedback controller K which achieves robust stability.

Since the uncertainty block in Figure 4.3 has structure, we apply the µ-synthesis, which can be formulated as an LMI

problem in the case of static state feedback design. There are two ways to approach this design problem.

Approach 1: (Without positivity requirement)

The IQC (4.14) is used. A controller exists if there exists a symmetric matrix P > 0, a real matrix K of compatible
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Figure 4.3: Plant description Figure 4.4: Sector bound condition

dimension, and Θ = diag(θ1, θ2) > 0 such that

 ATclP+PAcl PB1

BT1 P 0

+

 Ccl D1

0 I


T Θ 0

0 −(1/α2)Θ


 Ccl D1

0 I

<0

where Acl = A + B2K, Ccl = C + D2K. By standard manipulations and replacing P−1 by Q, KP−1 by Z, and

αΘ−1 by Λ, the condition above becomes


(AQ+B2Z)+(AQ+B2Z)T BΛ (CQ+D2Z)T

ΛBT1 −(1/α)Λ ΛDT
1

CQ+D2Z D1Λ −(1/α)Λ

<0 (4.16)

Hence a robust controller exists if (4.16) admits a solution Q > 0, a real matrix Z of a proper dimension, Λ =

diag(λ1, λ2) > 0.

Approach 2: (With positivity requirement)

To use the IQC (4.15) on the positive domain, we additionally require the closed loop system Gcl to be internally

positive. There exists a controller which makes Fig. 4.3 stable and internally positive if there exists a diagonal matrix

Q > 0, a real matrix Z with a proper dimension, Λ = diag(λ1, λ2) > 0 satisfying

• LMI (4.16) with α being replaced by β

• AQ+B2Z is Metzer

• CQ+D2Z ≥≥ 0.
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Consider a second order system with

A =

 −1 −2

−1 1

 , B1 = I,B2 =

 1 3

2 −5



C1 = I,D1 =

 1 −1

1 −2

 , D2 =

 0 0

3 10

 .
Notice that the open loop system itself is not a positive system. Suppose that the sector bound condition of the

uncertainty is given by α = 0.4, β = 0.2. A numerical analysis shows that Approach 1 is infeasible while Approach

2 is feasible. In other words, by restricting the search to the class of controllers that attains internal positivity and

taking the fact that a smaller gain bound of uncertainty is available in the positive region, a stabilizing controller can

be found.

Of course Approach 2 is not always feasible because there may not exist any controller achieving internal positivity

of the closed loop system. Also, even if there exists such a controller, the search space of controllers in Approach 2

is smaller than in Approach 1. Hence, depending on this restriction and the description of uncertainty such as (α, β),

Approach 2 may or may not provide a better result than Approach 1.

Another important advantage of Approach 2 is that a diagonal structure can be imposed on the LMI variableQ without

introducing conservatism. Hence one can readily synthesize a structured controller. In above numerical example, one

can search for a controller gain of the form K =

 ∗ 0

0 ∗

 that achieves positive stability by imposing the same

structure on the LMI variable Z in Approach 2. By numerical analysis it can be found feasible, yielding a controller

gain K =

 0.500 0

0 0.675

.

4.6 Linear vs nonlinear, static vs dynamic structured controllers with positivity require-

ment

It is a standard knowledge in the linear H2 and H∞ control theory that the best linear state feedback control law

can be found in the class of linear static state feedback control law, if there is no additional requirements. This

fact does not necessarily apply to the situation in which the controller is required to have a structure. The well-

known Witsenhausen’s conterexample [83] demonstrates that, although in a different context than our deterministic

problems, the best control under the non-classic in formation pattern could be even nonlinear. Moreover, as in the
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Figure 4.5: A simple traffic routing problem

second condition in Theorem 10, we additionally require that the closed loop systems is positive as well. In the

previous section, we have assumed that the structured state feedback gain was static, and formulated the optimal H∞

controller synthesis within this class.

4.7 Application to traffic control

Let us consider a model of traffic network with six nodes shown in Figure 4.5. The system introduced here could

be used as a simple model for vehicle traffic on a highway network, packet flows on a communication network,

or dynamic behaviors of a flock of people under an emergency. Our goal is to find the optimal re-routing policy that

reduces congestions, delays or evacuation times. It is desirable that the routing policy is implementable in a distributed

manner so that each local traffic planner is able to make decisions using local information only. We demonstrate below

that the structured L∞ and H∞ control synthesis presented in the previous section can be used for this purpose.

Let us denote by xi(t) the population (number of vehicles, people, etc.) at node i. Suppose that the dynamics of x(t)
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satisfies the following delay differential equation.

ẋ1(t) = −3x1(t) + 2x2(t− τ) + x3(t− τ) + u2(t− τ) + w1(t) (4.17a)

ẋ2(t) = 2x1(t− τ)− 4x2(t) + 2x4(t− τ) + u1(t− τ) + w2(t) (4.17b)

ẋ3(t) = x1(t− τ)− 4x3(t) + x4(t− τ) + 2x5(t− τ)− u1(t) + u4(t− τ) + w3(t) (4.17c)

ẋ4(t) = 2x2(t− τ) + x3(t− τ)− 4x4(t) + x6(t− τ)− u2(t) + u3(t− τ) + w4(t) (4.17d)

ẋ5(t) = 2x3(t− τ)− 3.3x5(t) + x6(t− τ)− u3(t) (4.17e)

ẋ6(t) = x4(t− τ) + x5(t− τ)− 2.8x6(t)− u4(t) (4.17f)

In this model, assume that there are four distributed network planners (controllers) located at node 1,2,3 and 4. Func-

tions u1(t), · · · , u4(t) represent the amount of traffic flow that was re-routed by controllers. For example, the first

controller is able to reduce the traffic flow from node 1 to node 3 by u1(t) and send this amount of flow to node 2

instead. Notice that this operation conserves the amount of total flow, since the portion u1(t) deducted from (4.17c)

is injected into (4.17b). Similarly, u2, u3, u4 are decision variables of controller 2, 3, and 4 respectively. We further

assume that each controller has access to the state variable of his own local node and an additional neighboring node.

In particular, controls are determined by the following linear feedback:

u1(t) = k11x1(t) + k13x3(t)

u2(t) = k22x2(t) + k24x4(t)

u3(t) = k33x3(t) + k35x5(t)

u4(t) = k44x4(t) + k46x6(t).

For example, the first controller decides his control action u1(t) based only on x1(t) and x3(t). In the traffic model

(4.17), the delay constant τ is understood to be the traveling time over each link between nodes. The closed loop

system can be written as

ẋ(t) = (A0 +B0K)x(t) + (Aτ +BτK)x(t− τ) + Ew(t)

where
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A0 =



−3 0 0 0 0 0

0 −4 0 0 0 0

0 0 −4 0 0 0

0 0 0 −4 0 0

0 0 0 0 −3.3 0

0 0 0 0 0 −2.8


, Aτ =



0 2 1 0 0 0

2 0 0 2 0 0

1 0 0 1 2 0

0 2 1 0 0 1

0 0 2 0 0 1

0 0 0 1 1 0


, B0 =



0 0 0 0

0 0 0 0

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


, Bτ =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0



K=



k11 0 k13 0 0 0

0 k22 0 k24 0 0

0 0 k33 0 k35 0

0 0 0 k44 0 k46


, E=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


, x(t)=


x1(t)

...

x6(t)

, w(t)=


w1(t)

...

w4(t)



We design two different controllers: the L∞ optimal control that minimizes the worst L∞ gain ‖x‖∞/‖w‖∞, and the

H∞ optimal control that minimizes the worst L2 gain ‖x‖2/‖w‖2, while keeping internal positivity of the closed loop

system. The closed loop transfer function is given by

ĜK,delay(s) =
(
sI − (A0 +B0K)− (Aτ +BτK)e−τs

)−1
E. (4.18)

In oder to guarantee internal positivity of the delay deferential equation, the internal positivity of the delay free system

(4.19) is not sufficient, but the following condition [61] is required:

A0 +B0K is Metzler and Aτ +BτK is entry-wise non-negative.

Specifically, the problem of interest is stated as follows.

Problem 1 Find a structured static feedback gain K such that A0 + B0K is Metzler and Aτ + BτK is entry-wise

non-negative, and the closed loop system norm ‖ĜK,delay‖, either L∞-induced or L2-induced gain, is minimized.

To approach this problem, let us also consider a “delay-free” closed loop transfer function obtained by setting τ = 0.

ĜK,delayfree(s) = (sI − (A+BK))
−1
E where A = A0 +Aτ , B = B0 +Bτ (4.19)
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Using the delay-free transfer function, consider the following variant of Problem 1.

Problem 2 Find a structured static feedback gain K such that A0 + B0K is Metzler and Aτ + BτK is entry-wise

non-negative, and the closed loop system norm ‖ĜK,delayfree‖, either L∞-induced or L2-induced gain, is minimized.

We claim that an optimal controller K2 for Problem 2 remain optimal for Problem 1. To see this, suppose there exists

a controller K1 that attains closed loop internal positivity of the delayed system (4.18) and attains

‖ĜK1,delay‖ < ‖ĜK2,delay‖ (4.20)

where system norm can be either L∞-induced or L2-induced gain. Since ĜK1,delayfree and ĜK2,delayfree define

internally positive transfer functions, by the DC-dominance (Theorem 7), each side of (4.20) can be replaced by

matrix norms of static gains.

‖ĜK1,delay(0)‖ < ‖ĜK2,delay(0)‖.

Since ĜK1,delay(0) = ĜK1,delayfree(0) holds for any K,

‖ĜK1,delayfree(0)‖ < ‖ĜK2,delayfree(0)‖. (4.21)

Since A+BK1 and A+BK2 are both Metzler, ĜK1,delayfree(0) and ĜK2,delayfree(0) are both internally positive.

By the DC-dominance, (4.21) implies

‖ĜK1,delayfree‖ < ‖ĜK2,delayfree‖.

which contradicts the optimality of K2 to Problem 2.

Using new variables in (4.10) and (4.13), the condition (4.7) is equivalent to:

A0P +B0Z is Metzler and AτP +BτZ is entry-wise non-negative. (4.22)

Hence, to summarize, the optimal L∞ and H∞ controller for Problem 1 can be found by solving the LP and SDP

(4.10) and (4.13), with conditions (4.10f) and (4.13d) being replaced by (4.22). If necessary, one can additionally

require the feedback gains to be bounded as kij ≤ kij ≤ k̄ij for prespecified constants kij , k̄ij [75], by imposing

kijPjj ≤ Zij ≤ k̄ijPjj .

Table 4.7 summarizes the L∞ and H∞ performances of each of the L∞ and H∞ optimal controllers obtained by
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L∞ norm of the closed loop system H∞ norm of the closed loop system
L∞ control 3.6364 4.1232
H∞ control 3.7113 3.5660

Table 4.1: Closed loop performances of designed controllers.
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Figure 4.6: Closed loop behavior of the L∞-gain minimizing control and the H∞ control.

solving (4.10) and (4.13) for the system (4.17).

It is interesting to observe that the closed loop dynamics behave quite differently depending on the choice of con-

trollers. Figure 4.6 shows the closed loop dynamics simulated in each case with delay constant τ = 5. In each

simulation, the initial state x(0) and the injected signals w1(t), · · · , w4(t) are set to be identical. In particular,

w1(t), · · · , w4(t) are identical non-negative signals obtained by adding a positive constant to a sinusoidal wave. As is

expected from the control policy, the L∞-gain minimizing control seems to relax the congestion at the most crowded

instances. The flip side is that it does not try to reduce the congestion at the less crowded instances. As a result, all

nodes are made equally crowded throughout time. On the other hand, H∞ control tries to keep the entire traffic level

in the network low, since by its policy, it tries to reduce the integrated squared sum of the entire population.
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Figure 4.7: Control of traffic topology.

Another possible use of the syntheses (4.10) and (4.13) is the topology control of the traffic network. Sometimes it is

more appropriate to consider the topology of the network as a design parameter as well, especially when it comes to

the infrastructure design. In Figure 4.7, we ask which additional link (A or B) is more effective to reduce congestion

after an appropriate control is implemented. By solving (4.10) and (4.13) for each situation, the optimal control policy

as well as the best achievable closed loop performance are obtained. Hence a quantitative comparison between A and

B is possible. Such a quantitative method for topology control might be useful not only in the traffic networks, but

also in other applications such as optimal power flow designs [84]. Again, such a comparison can be carried out here

because the exact value of the closed-loop gain (as opposed to a mere upper bound) is computable via LP or SDP.

4.8 Conclusion

In this chapter, we focused on the class of linear positive systems. We have revisit the fact that ‖G(jω)‖p with

p = 1, 2,∞ attains its maximum at ω = 0 for MIMO externally positive transfer functions. However, we also saw that

this is a unique property of positive systems in that only ρ(G(0)) ≥ ρ(G(jω)) ∀ω ∈ R hold for more general cone-

preserving systems. This property is used to derive an LP/SDP formulations to compute system 1- ,2- and∞-norms

of internally positive systems. A major contribution of this chapter is the derivation of the KYP lemma for internally

positive systems. Unlike the standard KYP lemma, the parametrized Lyapunov function V (t) = x(t)∗Px(t) can be
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assumed diagonal without introducing conservatism. Most notably, this allows us to formulate a structured static state

feedback H∞ control problem as an LMI problem. The newly uncovered structured static state feedback H∞ control

is compared to the existing technique of structured static state feedback L∞-induced gain minimization control in the

simulation study of the traffic control problem.

There are many open problems remaining in the control of positive systems.

• (Static vs. Dynamic controllers) It is known that the optimal dynamic state feedback controller can be found

in the class of static state feedback. However it is not known whether this remains true if the controller is

required to achieve internal positivity. To answer this question, more study is needed as to the class of dynamic

controllers that attains internal positivity with respect to the plant state only, while allowing the controller state

to be arbitrary. An immediate question is how to characterize such a class of dynamical controllers. To the best

of our knowledge, this is not known. Structured dynamic H∞ controller synthesis achieving internal positivity

is also unknown.

• (Linear vs. Nonlinear controllers) Although we have presented optimal structured controller syntheses in this

chapter, this does not mean that the optimal structured static state feedback is necessarily linear. More study is

needed to answer when the linear controller is optimal when a controller structure and the closed loop positivity

is required.

• (H2 and other criteria) When decentralized control design under the different performance criterion such as H2

is considered, it is not clear what subclass of linear systems allows convex formulation of the problem. It is

possible to formulate the (centralized) H2 control problems as LMI problems. However, unlike the H∞ case we

saw in this chapter, internal positivity of the system does not allow us to assume the Lyapunov-like parameter to

be diagonal. Thus, internal positivity does not allow a convex formulation of the structured static state feedback

control design. Hence, it remains an interesting question to ask what subclass of linear systems will yield a

convex formulation of the structured control design.
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Chapter 5

Conclusions and Future Works

5.1 Contribution of this thesis

This thesis considered three main themes: symmetric formulation of the KYP lemma, DC-dominant property of cone-

preserving systems, and distributed control of positive systems. Technical contributions of this thesis are summarized

as follows:

• The KYP lemma is presented as a systematic way to convert well-posedness problem into an efficiently verifiable

convex programming. In the robust stability analysis, the proposed form of the KYP lemma treats “frequency”

and “system uncertainties” equally, and helps to show connections between seemingly different problems in the

literature.

• The notion of mutual losslessness is introduced to characterize a set of convex cones in the space of Hermitian

matrices that yield a lossless S-procedure. Although no systematic method is known to check the mutual loss-

lessness of a given set of Hermitian forms, this abstract notion explains the source of conservatism of various

robustness analysis method including the KYP lemma.

• Cone-preserving transfer functions are considered, and this class of transfer function is shown to have the DC-

dominant property. This is a valuable observation in that it eliminates a need of “frequency sweep” often required

for robust stability and performance analysis.

• Using the DC-dominant property, the delay-independent stability is shown for the class of cone-preserving

dynamical systems. In particular, this result is applied to give an alternative proof of the delay-independent

mean-square stability of a multi-dimensional geometric Brownian motion.
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• The “Diagonal” KYP lemma is shown to hold for internally positive systems. This result is particularly useful

for a convex formulation of structured static state feedback control design problems.

5.2 Future Works

In this thesis, we have studied robustness analysis using the well-posedness model. The symmetric formulation of the

KYP lemma (Theorem 1) is regarded as a systematic technique to relax the well-posedness condition to an efficiently

verifiable matrix inequality condition. In this thesis, we have assumed that the space R(Θ) of uncertain parameters

given by

R(Θ) :=

S ∈ Cn×n :

 I

S


∗

Θ

 I

S

 ≥ 0 ∀Θ ∈ Θ


and this expression is used to characterize both regions of frequency variables and system uncertainties.

Some LMI techniques reported in the literature can be viewed as a generalization of the KYP lemma to the “higher

order polynomials”. In these techniques, the parameter space is given by

R(m)(Θ) :=


S ∈ Cn×n :



I

S

...

Sm−1



∗

Θ



I

S

...

Sm−1


≥ 0 ∀Θ ∈ Θ


(5.1)

in an effort to improve computational performance or to reduce conservatism that is inevitable when the KYP lemma

(Theorem 1) is used. In [85, 86], a frequency domain characterized similarly to (5.1) is referred to as the generalized

frequency, and is used to reduce the size of the SDP to analyze the stability of interconnected identical subsystems. In

[87], a use of Lyapunov functions taking higher order derivatives of the state is proposed for a less conservative robust

stability analysis. In this viewpoint, Θ in (5.1) is understood to parameterize such Lyapunov functions. In [88], a

similar expression to (5.1) is used to express parameter dependent Lyapunov functions (in contrast to the simultaneous

Lyapunov functions for the quadratic stability), and a hierarchy of LMIs is proposed to analyze the stability of a linear

dynamical system with multiple scalar uncertain parameters. Other higher order LMI techniques can be found in [89]

and references therein. In the future, theoretical connections among these techniques, the formulation of the KYP

lemma discussed in this thesis, and voluminous results algebraic geometry should be made transparent, so that flexible

and efficient robust analysis method becomes available.

Although the considered approach provide a unified view on the robustness analysis, it it not clear how this observation

can be effectively used in the control synthesis problems. This will be a future work as well.
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